AD-A126 847 INTERACTIVE MICROCOMPYTER CONTROL SYSTEM MODELING AND 1/1'
REALIZATION USING A DATABASE FOR AUTOMATIC PROGRAMMING
{U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA R F JOHNSRUD
UNCLASSIFIED DEC 82 F/G 9/2

NL .

| I e —— T ——— -

i P

3.6

' I

o
22 e g

(o)
FFEEER

—

.

—
rre

)
==

40

2

EEEE

B

[4
3

I
B

B

I
- MICROCOPY RESOLUTION TEST CHART
i NATIONAL BUREAU OF STANDARDS-1963-A

T : Coo T
;
. o et b e, RRTIEEY et . L ANeT e ~ ’ "
I 1 Bttty o s i o S e CIrREE Y e R WIS T BT T
1

% &

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

- T\\\\llz*‘a

| THESIS

INTERACTIVE MICROCOMPUTER CONTROL SYSTEM

MODELING AND REALIZATION USING A DATABASE
¢ FOR AUTOMATIC PROGRAMMING

b

4 Roger Franéis Johnsrud

December 1982

\
\
\

Thesis Advisor: A. Gerba Jr.
Approved for public release; distribution unlimited

S g e

DTG FILE COPY

‘: ::‘ | 83 04 14 082

e ey ey e e o s = o]
REPORT DOCUMENTATION PAGE A RO T
T RIFSRY STISEN o e ey
-R126 Y7
& TITLE (and Subeirie) 5. _TYRL OF AEROAT & PEMOD COVERTD
Interactive Microcomputer Control System Modeling | Master's Thesis
.| and Realization Using A Database For Automatic | Oecember 13982
Programming. 6. PERFOMNNG ORG. AEPORY NUNBER
ATy LT T CERYRAEY oK ShanY wubthe 1
Roger F. Johnsrud
. PERAFONMING O 1ZATION NAME AND A . RAM CLENENY. PROIECT. Tatx

SECUMTY CLASBIFICATION OF TS PAGE (Then Date Bntered)

Naval Postgraduate School ARGES FORKUNIT wuuetRe

Monterey, California 93940

1. CONTROLLING OFFICE NAME AND ADDRESS 12. AEPORY DATE
December 1982
Naval Postgraduate School T RURGER OF PAGES
Monterey, California 93940 117
‘ :] vV nanl & A] Wom Controliing Ofies) 'ﬁm_j
Unclassified

ALSI? ICATION/ DOWNGRAGING |
: fc‘ﬁmu 1ne

Te. DISTRIBUTION STATEMENT (of e ‘.—ﬂﬂ

Approved for public release; distribution unlimited

17. DISTRIBUTION STATENENT (of the sbeirast entered in Dleck 20, I ditterent fram Report)

18. SUPPLEMENTARY NOTES

———E————— S
19. XEY WORDS (Conttnue en rovires oide if nocccoary and Ganiily by blook aumber)

Control Systems Modeling Simulation
Microcomputers Database Automatic Programming

0. ABSTRACT (Contius en reveses oo If NOSccosry and identily op Slock manter)
~ A program for control system modeling, simulation, and realization useable

by the novice programmer was developed for interactive use on a microcomputer.
The program uses two software packages; PL/1-89 from Digital Research™and

DBASE II. from Ashton Tate. -

“ The paper covers a complete example for modeling an;7:;mulation of a
minimum time response ripple free controller for a-17$2 Plant. The program
uses two sample rates, one for modeling the computer and the other for modeling)

DD ," 5%, 1473 toimom or 1 wov 815 oBeOLETE

$/% 0102°016- 6001
? SECUMTY CLARNIMCATION OF Twis

Pt ———————————

"R

e+

D ®
IO

D o "]
mu-vv s.amova g Vs .gl‘. [=k

the plant. Variable delays due to computer computation are included and
corrected semi-transparent to the control designer.

This thesis covers two different fields of interest, one for the
experienced control system designer yet a novice programmer, and the other
for the novice control designer yet an experienced computer programmer. Key
programming concepts include using a business database to automatically pro-
gram a control problem requiring a scientific language.

~

Pt
i T
L N {2 r
LT 1t iomu e
o
\ ey
) -~ REN !
N 1anat » B
\ et taY el oty Ccics
o Aenll ewmd/or
1!131:- ! Special
!
\ | ‘

DD 5‘."" 3 1473 2
[} W
S/ ‘] 01%2-014-6601 SECUMTY CLASNPICATION §F YIS PAERITRen Date Bnieved:

:l
;f

L

PR

%o
(4

G N
oty

|

Approved for public release; distridution unlimited.

Author:

Interactive Microcomputer

Control System Modeling and Realization
Using a Latabase for Automatic Programming

by

Roger Francis Johnsrud
Lieutenant, United States Navy

B.S.E.E., University of wWashington, 1875

Submitted in partial fulfillment of tke

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRALUATE SCHOOL
ILecember 1982

Lean of Science and Engineering

o ABSTRACT
5
b

A program for control system modeling, simulation, and

-

realization useable by the novice programmer was developed
for interactive use on a microcomputer. The program uses two

software packages; PL/1-80 from Ligital Kkesearch and LEBASE II

R

from Ashton Tate.

ep—

The paper covers a complete example for modeling and ;
simulation of a minimum time response ripple free controller

2
for a 1/S Plant. The program uses two sample rates, one for

modeling the computer and the other for modeling the plant.
Variatle delays due to computer computation are includea and
corrected semi-transparent to the control designer.

This thesis covers two differeat fields of interest, one
for the experienced <control system designer yet a novice
programmer, and the other for the novice control designer yet
an experienced computer programmer. Key programming concepts
include using a business database to autohatically program a

control problam requiring a scientific language.

2
B
sy
£
i
e
e
A
0

. I. INTRODUCTION - 9
3 : A. CONCEPT s
| B. ASSUMPTIONS ANT REQUIREMENTS ~—----——-——-- 10
f“ C. [MPLEMENTATION - 11
E II. GENERAL LISCUSSION — 13
§ A. CONTROL ENGINEER INFORMATION ——=——————m—-o 13
' B. PROGRAMMER INFORMATION — 18
III. SYSTEM IDIOSYNCRASIES —- ———- 13

Iv. FUTURE EXTENSIONS - 24

V. DESCRIPTION OF DATABASE ALGORITEM =—-——-—=-mom- 27

A. GENERAL TISCUSSION — 27

B. LEVEL #1 (YAJOR SUBROUTINES ANL PROCETURES) 28

C. LEVEL #2 (PROGRAM LESCRIPTION) —————-———— 3@

L. LOGICAL STRUCTURE - —- 36

vI. CESCRIPTION CF PL/1 ALGCRITEM ——- 35

A. GENERAL DISCUSSION — 3¢

B. LEVEL #1 (MAJOR SUBRGUTINES AND PROCELURES) 41

C. LEVEL #2 (PROGRAM CESCRIPTION) ——————-=mv 42

D. LOGICAL STRUCTURE - 43

ViI. EXAMPLE - a8

A. INTRODUCTION 48

5. PROELEM SETUP ———- 4

c. AUTOMATIC FROGRAM -~-w-- 5

(8]

o e — . ——
a

o,

C. TEST KESULTS ANL PROGXAM EXECUTION -===——-
VIII, CONCLUSIONS

APPENLIX A: [LBASE Il PROGRAMS

APPENDIX B: PL/1-80 PROGRAMS
APPENLIX C: GRAPHS OF EXAMPLE PROBLEM RESULTS ——=====m
LIST OF REFERENCES

BIELIOGRAPHY -—

INITIAL DISTRIBUTION - -—

1¢4

111
115
11€
117

RIS T < . .
\.4&, v R
- R T e R B e winidiadided

€A.

Simple Difference Equation Lemomnstrating 3System

Variables

Variables Used for Initialization -==——vccececcccewa-"

Inttial Tatabase Values

Computer and Plant Mod2l =-- - ——
Test Program Block Liagram ——
Variables Jsed im STRT Initialization ~=—=——~e——- —
Structure for STRT - ————

Latabase for Example Prcbdlem

Tatabase for ZIxample Probdlem ==weecr——creccccccccae=--

Latabase for Examole Problem ————

[atabase for Zxample Prcblem - —————————

Monitor Teclarations and Functions -—
Function leclarations and Equations ~=~==—me—ccaw--

Function Teclarations and Zquatiocns —=——=—vemee——cec—--

Function leclarations and Equations ---- -
Function Declarations and Zquations ===——eececocoe——
Function Teclarations and Equations e=w—wercecccaca-

Function TLeclarations and EZguations ——v—=r—wcececae--

Function leclarations and Equations

Function Leclarations aand Sguations - -

CATAINFO.TXT -

FORM.SUB

n w tn o
W0 =3 ~ (€}

[§,}
ey

o)
-

[9)]
-~J

s
[43]

10B. FORM.SUB 7¢

11A. ANSWER.COM Runtime Results - -- 7S
11B. ANSWER.COM Runtime Hesults 8e
12A. PRINT.PLI With Zero Lelay —m————— 21
128. PRINT.PLI #4ith Zero Delay 82
IKA. PRINT.PLI _q!p Nwz|y Percent [elay -- g3 |

13B. PRINT.PLI #ith Forty Percent Delay 84 %
13C. PRINT.PLI #ith Forty Percent Delay -——-- g%
13C. PRINT.PLI With Forty Percent lelay - 3€

14. Programs Required for ratabase QOperation -—~===w=== ¢}

15A. MENU e3
152. MENU Format -- g3
1€A., CMENU 28
l 16F. CMENU Format - e DL b *2 <)
17A. CINIT - - 2<
17B. CINIT Format —————— L7 i
18. Programs Required for PL/1-£¢ Cperation -—=——=-=--=- 124
1¢A. Respoase to Unit Step Input ¥With No Cecrrection ---= 111
1¢t. Respoanse to Unit Step Input »ith Correction -===—-- 111

Terminated Ramp Input With No CJcrrections —-=———=e——-
Terminated Ramp Input ¥itk Sorrections ---——=—=-—--

Response tc Variable Step Inputs e¢ith and w¥ithou?

COTrections ———=cmcccocccc s cc e e e e -—-———

Eesponse to Variabdle Step Iaputs &ith and Without

Corrections - - - 114

TP > - e—

,.::'r\\

SRR AT S ¥

A. CONCEPT

The intent of this thesis was to develop a <computer
program tkat an experiencedi controls engineer could ase to
help him model, simulate, and realize contrcl systams with
tce convenience of a des£tor microrcmputer., The sontrol
engineer #ill not need to be an experiznced computer
programmer. [2 order to accomplish the above requirements it
is necessary that the program be easy to use, effectively
requirinag that the program write the -~omputer coie itself
witk 1little help from the control designer. 7This is cemmonly
referred to as automatic programming. In oarder £5r $te2
program to He a useatle tool for the :controls d=signer the
system must also Prcocduce a good mniel of tne system ttat is
being designed. Cbdbviously all control systems :annot 1te
considered in this type of project. The avproack tiser in
this thesis was to use éontrol systems tzat Lave error
siknals designed to be equal %o zero or differ fror ze=c by a
soastant. Other guiielines of this proj=ct inzlude: <ihe
equations must be simple difference equationms, th2 syster
must allow for calculation delays witkin tre computer aand
these delays must be corrected for automatically or at lzas?

allow for the possitility that the decigne- ~:m correct foo

the delays, 2and the rrogram must te atle {0 med2l tze plant

<

between the sample perlods of the computer which basically
means there are two sample pericds, one for the zcmputer and
one for the plant. Since the plant cannot be programmed as
analog it must be discretized. Usin, a faster sample rate feor
the plant allows simpler equations yet mainteins a goocd
representation for the plant. 4dditionall;, tke yrogram must
be able to model apalog to digital and d4i_ital tc aralog
conversions. After the model Las teen designed and tkre
simulatioa rum, the results that are availadls f{from tie
program must be easy to use and easy to interpret bty the

~

con:rols engineer. In sré2r to meet all 0° trese
requirements, most of the program development itself must bde
transparent to the controls engineer. T.e approack takeun was
for the control engineer to orovide only equetions. function
names, and function relationstips Yy proviuing tze names T

other functions used as izovuts for esach equation.

b. ASSUMFTIONS ANI RECUIZEMENTS

Trk2 assumptions and requirements ar2 sv3ted delow, Tirse,
as mentioned above, the program must oe relatively aasy tc
use. TLe program must have tigh jrecisioa mat:h capatriiaty
since it was designed t¢ be used with soatrecl systers, S3Speed
0f compiling and oneration was 2ot conmsidiered criti-al at
this point simce micropro:essors are hecoming <srallar aad
faster which w#will solve any reelizetion prodlams i the =near
future. A major coansideration is that once *ne sivulations

have been rua and th=2 results are acceptatla to tre desigaer

i¢

A . -,

RRUSEESI P T TS T

then the simulation equations should be easily converted into
realization equations. Basically this means the simulation
equations in the computer should be easily converted into
hardware equations tkat can be used to control a real plant.
In order to accomplish this task it was decided that the
program must develop source code that could bde compiled ty a
high level language compiler for either computer simulation
or hardware implementation. This approach makes the prcgram

transportable and hardware independent.

C. IMPLEMENTATION

Tris project was imrlemented entirely on miczcroprozessor
based systems to show that it is feasiole and practizal to
use these small systems for major development. The <rresent
system 1s slightly constrained due to the length c¢f -:orpile
time. All programs were developed usiag a 78¢ microprocesscer;
nowever, the <code is written in high level source languacses
therefore the programs will also run on the simpler E&ECEL
tased microcomputers or on the mcre complex sixteen Dbis
microprocessors such as the BOEE.

Tk2 languages chosen were PL/1-20 from Ligital 3Research
oecause of the math and hardiware capatilities f %he laanzuare
allowing for control of analog to digital andi othaer prac-=cses
inside the computer, a&and DBASEZ II from Asutor Tate ki-sk
allows easy and high level =manipulation of 4atabases azd file

systems. Cne =2f the major points of tris taesis 1is to

manipulate functions and functional relationships as

t1

databases. Once the relationships have been ieveloped, the
database program writes PL/1 source code from the database
information., The PL/1 source code is then compiled by tre
PL/1 compiler and the simulation run on the resident
hardware,

The present programs and the test example in this report
provide simulation only and send the results in floating
point format to a disk file., The floating¢ point file can then
be converted to display the information 1in tabular or
graphical form such as shown at the back of tkis repoert. The
information can be displayed in a variety of forms such as on
display consoles, printers, plotters, or graphic terminals.
The real power for design is in the use of graphical
equipment to ©provide the control engineer with the entire
picture of the system under test. The Fewlet Packard GS872B
plotter and 26474 graphics terminal aand the Intercolor 8343
graphics terminal were used to show *hat the data produced
was basically machine independent. The code can »e ~ompiled,.

run, and displayed on a variety of differeunt machines,

II. GENERAL DISCUSSION

PP PP T T]

A. CONTROL ENGINEER INFORMATION
The control system engineer does not need to kmow how the
] . computer programs work in order to use the system. It is
assumed that the control engineer is a novice programmer with
h : some knowledge of the CP/M operating system and limited
background in program writingi however, it is assumed he is a
gknowledgeable control designer. This means he is fairly well
versed in taking control systems andi producing discrete
system equations from tre continuous coatrol equations. These
equations are designed and optimized by whatever means a-e
~ available either by hand or oan2 a mainframe computer.
(Microcomputers will soon be able to 40 major sSystem
i o development equations.) Once tre equations are develcoped the
designer enters them 1into a microcomputer and t2sts the

simulations. If tre simulations are acceptasle then it srould

f‘ ’ be an easy matter teo convert the simulation code for tre

controller design intc development ccie for a~tual
implementation into tardware,

For ease of wuse the programs are menu driv2an and use

simple cursor arrows or commanas for pointine at <elections.
4 Additionally very Dbasic information is needed such as the
N name of functions and equations in a simvle format the

computer can use., This procedure is azconmplished oy using tue

AN Dl

e T
N
[}

ot cania ben S M A

v rym

database program which only allows a wuser to enter
information tin very specific fields of very specific type.
The type of information required from the designer is to add
or delete equations, to change initial conditions. and to
provide function names.

There 1s an initial learning curve with tkis program bdut
an attempt has been made to keep it as short as possticle.
There are some peculiarities put in as a requirement to make
interfacing between the humaan 4and the computer possible. 3ome
examples 1include rames such as INPUT:A or INPUT:E that
indicate which function the designer is talking accut to the
computer, As an example INPUT:A will associate a fuactior in
the computer with the function name the designer 1243 selected
such as INPUT:A = Un. Another very abstract nam= is Aipr2rl.
The user 1is expected to enter either 1 if he wants tre
PRESENT value of the functicn named under INPUT:A cr 2 if Le
wants the DELAYET value of the function named under INPUT:A.
If the desizner will be using doth the present and past
values then enter 1 to get the preseat value and the nvast
value will also be availadle. The strange requiremert for
A1P2D 1s provided only to allow much faster programs when ths
code 1is implemented in hardware and the designrer only aeeds
past or delayed values of a function. Two other cod2s ar2 [AP
and IAL for INPUT A PRESENT and INPUT A TELAYEL. These two
codes are provided to Xeep the equations needed for the

functions short. Another variable is "0 which is useec tc

14

T e e

define the delayed or previous time sample of the functions
own OUTPUT. There are similar definitions for up to five
inputs INPUT:A through INPUT:E for each function. A function
can be defined in three ways:i "F" means the function is an
equation that the computer finds a register to hold the
result in, "AL(x)" means the value is to de placed inm one of
eight analog to digital registers, and "TA(x)" means the
value 1s to be placed in one of eight digital to analogz
resisters. An example equation and simple tlock 4iagrar is
shown in Figure 1.

Other variables used include "T" for the discrete sample
period and "T1" for the sample period of the plant. If the
value of T is normalized and T1 has the same value as T then

the programs will run faster ian the readalization of the ~ode

since these values effectively disapprear from the =quations.
[t should Ve noted that all functions are done in floating
point so the simpler the equations the faster the ccde. The
example problem at the end of this paper normalizes T bdut

still includes it i{in the equations to show how it could show

up in the function. Finally the designer is alilowed to

specify end criteria and intervals for calsulating tte rplaat

ST e e~y

relative to the computer itself.

After the designer has entered the equaticns 1into the

database and is satisfied that all function relationcships are
correct then all that is required is to enter the carrect

menu selection that compiles the code., The ccmouter program

e e s

‘b : . .s
T ——— [PE——) e . -
» N e — e s e e e e - .
i " 8 ¢ "
£ -~
Y di et e -

IAP
X >
IB
Y d Y
F = D2
NOTES :

Assume by previous definition that INPUT:A = X, INPUT:B =1,
FUNCNAME = Dz, and the below equation is desired:

D(k) = X(k) - (2 * x(k-1)) + ¥Y(k) - (2.5 * D(k-1))

Making substitutions:

F =Pz = D(k), IAF = X = X(k), IAD = X(k-1), IBP = Y = Y(k),
and 0 = QUTPUT LELAYED = D(k-1) leads to the equation ---

F = [AP - (2 * IAD) + IBP - (2.5 * Q)

Notice that the above function omly has two inputs, X ann Y

Figure 1

Simple Difference Equation I[emonstrating System Variables

16

e

will now write the necessary source code from the database

Sar «\MM

and subsequently invoke the PL/1 compiler which will turn the
code 1into a program that will run on any of the previously
discussed CP/M based systems. The executable file produced is
called ANSWER.COM and is run on a CP/M based system by typing
"ANSWER" 1in respomse to the operating system input prompt.
Luring program ANSWER.COM execution the results will be sent
to a floating point file called DATA.FLT. Also, while the

program is running the intermediate results are printed on

the display device for program troubleshooting should tre
results not te as expected. The file TATA.FLT 1is not
printabdle; however, an example utility program called
L 7 PRINT.PLI 1is provided that chaanges the floating point file
- into a printable text file. This program is executed by
typing PRINT PILE where FILE is the name of the designer
provided text file the designer wants the results placed
into. with further programming development the floating point
data can ©be converted into any format needed by different

aevices such as plotters as shown by the plot results ia

Appendix C.

The 1information for understanding the database program
operation is provided in Chapter V. This section 1is not
necessary for understanding at the design level but it does
explain variables that will bYe needed in equation
development. Additionally the example problem will be helpful

s to the design engineer. when the desigrer is ready to use tte

X

program all that is needed is to enter "LBASE MENU" to the
CP/M operating system prompt. AS previously stated the
designer will need some familiarity with CP/M before the

program can be of use.

B. PROGRAMMER INFORMATION

This section covers the experieance necessary for program
maintenance and further development. These programs would be
worked on and coded by an individual that ras a general
control system background; however, he must have substantial
experience with computer programming. The type of computer
experience needed pertains to operating systems, event
counters, and automatic programming. The programmer must have
a good knowledge of both PL/1-8¢ and LBASE II. Additionally
it would be necessary to know microccmputer hardwvare
implementations such as analog to digital converters and
sample and holds. These devices are simulated in the computer
programs but further useful extensions would involve
implementing the code into realized hardware. The information
required for the programmer to understand the programs ‘s
contained 4in the remainder of this thesis. The majcrity of
this thesis s the computer code required to implament a
design environment for a povice programmer through the use of

automatic programming.

ATy

e

Ma jor problems encountered in this thesis had to do with
programming and efficiency. The major problem is that there
is no one programming language that contains all the f=atures
necessary to implement the entire project. LBASZ II was
chosen because of the relational database characteristics
even though it has very limited math or hardware
capabilities, The requirements for reasonable math is the
reasor PL/1-5@8 was chosen and though some database systems
are avaliable for PL/1 they do not have all the features of
IBASE II. A major deficiency of IBASE II is that it will not
allow the printing of a semicolon. The sericolon |{is
considered a command character in L[BASE I[I and therefore
reserved, This can be considered a major bug for a database
system, especially one that was designed for ©business
applications. It is foolish to selieve business will not want
to include a semicolon someplace in one of their
transactions. 4Ashton Tate was notified and tney replied it
was no* worth trying to fix. This presents a prodlem siace
thre database program was used to write the source code in
FL/1 and PL/1 requires a semicolon it the end of every
statement. The problem was worked around by raving IBASE II
write a backslash every place a semicclon was needed in t2e

PL/1 source text. Next ¢ PL/1 preprocessor called aAEFCEV.PLI

4 j:{ . M
1 7
A

was used to change all backslashes to semicolons prior to
invoking the PL/1 compiler. This takes a large amount of tiae
compile time which could have been easily corrected by a

reasonabtle response from Ashton Tate. PL/1 also bas some

problems; however, Tigital #esearch was more than bappy to
try to overcome deficlencies. There are several problems in

tteir floating point routines due mainly to conversion rules

% - e

which zan zause strange effects in the results. Most floating
point fuasctions such as the exponential function tend tc
convert the arguments to fixed before calculation and this in
effect truncates the arguments, As an example i{f one desires

to raise an exponent to a power and that power is a function

'1 such as X/Y then bnth X and Y ani the result zet truncaiei.
;‘ If X/Y is a fraction less than 1.2 the effect is to truncate
: : the result to ¢.¢ and the resuvlit of the expoment to &
' N fractional power always ends up =qual to 1.¢. The way arcyund
3 tris problem is to coanvert X and ¥ to CHARACTEARS before doing

the division. This is only part (f the probler., Even i{f X and

Y origionally were floating peint and were convertee 1o

ctaracters the result of the exponent evaluation is *ixed

decimal, Now this result must ve ~nconverted by anctlner

function called FTC in order to get the rasult back to t:re

i system in floating point. An example of this shews up i2 the
o MONITOR.PLI program for the function called CF, This does
cause some limitation on the type of equations that tie

césigner can use without Knowing some pe-uliarities ¢f tre

4 . Mwmzu-«.—‘w S e

~1<..
s et Fore i,
"

designer can use without knowing some peculiarities of the
system.

For the sake of program efficiency, as far as development
soes, all wvariables or functions the designer wuses are
considered floating point. This makes programming easier with
higher preciston; however, the code takes longer tc execute
even though the execution time was not considered critical in

this implementation. Using floating point for all functiouns

o m e, .

introduces some inaccurate realizations when dealing with
analog to digital and digital to analog coaverters. TLis is
not a major problem since tkese devices will have greater

accuracy in the future or th= devices can b2 mo_eled nmore

ﬁ accurately in future designs. .

; All results presently produced by this system are placed

i : on floppy disks inside the computer. Writing tc the d4isk aund

é displaying the results on a terminal are an otvious slowdown

a & in system operation. These inefficiencies do not show up in a

3 realization of the control system siace the controlle~ will

ORI v WL

be self contained computer code communicating only with tae

converters, Additionally the code will be <aster since {t

will not be necessary to simulate the plant.

b S A e

Presently the realizaticn cf the cede is not implemented,
Bl The software code needed for converters and the actual

monitor needed for the realized hardware is net ievelored.

This is not a major problem and shkould be relatively straight

forward for & computer programmer with general bhardware

| ;
;

i W

~

experience. The actual control program will be identical and
will only need to link into the new converter programs. In
L addition the simulation display is not fully implemented. To
make this project a powerful tool the simulation results
should be presented in graphical form to the designer similar
j ' to the plots at the end of this raper. If properly displayed,
‘ ' when the designer changes one part of the system all effects
f tkroughout the system should be dynamically evident. The
ddvantages of a completely containei hardware, software. and
' display system are obvious.
| The time required to compile the programs is definitely a
function of the computer hardware. Most newer 282 Dbased
] single user systems can compile the code in about fifteen
miautes. 80@8¢ bdased systems, older ZE&C based systems, and
y multiuser systems that snare the central processor will

require up to thirty minutes to compile. Eezcall tue -ompile

3 4 time is not critical as mentioned earlier ann the reclization
code will run in the order of millisecoads. 4s a final note

the programs would run much faster if only one langra«e and

B e e
ameg:

no preprocessor were needed.
Another area that requires discussion {is the trheory

involved in the design of the correction factor. T[eveloprent

- of a general prediction factor due to delays caused by
‘. conversions and computer calculations is covered very briefly

in tnis paper. The practical results of a predictor that |is

e

used with the example problem is shown in the graphs at the

w o Cuep e ye

f i AR g R L Lt gt e <z - - v . - - T %
Yy '

end of this paper’ bhowever, how the results wvere obtainei and

wvhat they really mean is not fully investigated. Hopefully,

this will be pursued and discussed in a following paper. Tre
predictor is more a control engineers problem andi needs to te
4 investigated extensively to determine the optimum predictor

|
* B
for all possible delays. Further discussion is provided in
the example problem.
t
|
i
i

: D o o =y

IV. FUTURE EXTENSIONS

i After a careful investigation of the types of problems
encountered with various hardware and software interfaces. it
becomes very evident that a sixteen Dbi or larger

microprocessor that offers high speed calculation 1irntegrated

TN e ——— .

; into a complete graphic and plotting machine will te a
definite boost to the realization of future work,
Additionally a matﬁ processor integrated circuit that =can
operate concurrently with the ceutral processor will e «of
. invaluable 4importance. Once you place these Lkardware 1items

along with good converter circuits into one unit it will ro
» longer be necessary to simulate in one machine and realize in

another., Once the simulation code works all that will e
i needed will be to specify executing the realization code on
the same machine if cononectors are availabdle on the machine
i for communicating with the plaat. Oace the syster overates
correctly the nardware woula be reduced to a smaller special

purpose system; however, the power of using a microvrocesscr

for the controller cannot te overlooked. I[f one vrovides the
capaoility of a full blown microcomputer in the control 1loor
4 even thougb all processes are not needed, tke system couid be

sent to a distant changing environment and i{ the control

nE equations needed to be changed due to unforseen 2ir~umstances

it could be done remotely. ky using the abdove method {: sould

] 24
i

E——

be possidble to reconfigure and realize a 1aew system
dynamically which <cannot bte done by a vphysical one time
hardvare implemeatation.

Another requirement is tke software system needed for
this type of development. The problems of integrating two
completely different software packages is evident in this
paper. 4n ideal software package would' be a scientific
relational database that has the capacility to control the
computer hariware and provide seli modifyirg code or
automatic programming for\i:’s own operating system. This
type of language would make the programming more efficient,
ease the implementation, and provide a friendlier enviroament
for future expansion., This type of software package 1is
realizable under the new concurrent laﬁguages being develorped
such as ALA (product of the Lepartment of Lefence). ATA has
not been proven to work in microcomputers since it is such an
extensive language; however, several companies are snowing it
to be feasible in the newer computers such as tre €80@0
microrrocessor from Motcrola. The €E¢@@ is a thirty tw: bit
processor with a sixteen bit external ous. ™Motorola is
presently designing a version of trhe GE¢0OQY tc save a thirty
two bit external bus.

It 1is recommended that future systems :ontaim processors
such as the 680wd and math processors such as [ntel’ s 8«87 or
similar math processors from other companies such as Texas

Instruments. Additionally high speed high precicion analoe to

) o
I . W g e ine . _— B T e g S ety e g

digital and digital to analog converters should be used. The
type of -converters used should contain their own multiple
inaput sample and hold circuits. Tbhis would insure capturing
all inputs at the same time (versus time multiplexing) making
- tre sontrol realizations more practical for real time

oyerations.

o a

2

—— T T —p—— A

—liimn i m e - P VARTE RPN SR, P LI

A. GENERAL DISCUSSICN (kefer to Apperndix A)

This section covers how the database turns tke functions
into PL/1-80 code. It covers each suorcutine and there are
niats on how the control designer vuses the system. The
easiest way for the control designer to us2 tkhis thesis is to
briefly read this material, go through the example pro lem,
and then proceed directly into the program. In general a
database is & program that contains related information.
wormally trese vprograms are used in business applications
wiere it is desired to keep track of an individuals name.
adaress, or account infermation; however, databases can he
used to stor® other information. In this program
implementation the database contaias tke function neme, the
type of function such as an analog function, names of other
functions that are used by this function as {nputs. the
equations for the functions, the relationshico zetween
functions, and if the function will pe saved for later recail
and plotting.

The ©program has the ability to develop 1ew or recail old
system models that have been previously developed. Cn~e the
program is entered the model can te changed by aiding or
deletine transfer functions, <chanee relatioasnips, or change

tl.e equations. additionally the models initial coaditions c=an

F4}]
~1

be changed. If only the initial conditions are changed the
program will compile much faster since each function will not
need to be recompiled. After the system model is developed
the database proceeds to write PL/1 "include” files that are
later included into standard PL/1 modules developed for this
project. A

The features of the LBASE II program ire the bigh 1level
relational database language and the ability of the program
to write text files onto floppy disk. Tke disadvantages
include a limited math capability and it does not provides the
ability to interface with the microcomputer hardware. A
severe drawback in the program {s that it cannot ©produce a

semicolon in any of the text files tnat it writes.

B. LEVEL #1 (MAJOR SUBROUTINZ3 AND PROCEDURES)
1. MENU.CML - initial menu selection

a. Initializes all variablas and tre database.

b. Enters a CASE statement to select a new problem,
old problem, save the present problem, display present
function names, change only the iunitial conditioas of the
present problem, or quit the program.

c. 3See Figures 15A and 128 in Appendict A.

a. Develops the control model database.

b. Enters a CASE statement to edit, add, delete,

recall deleted functions, or change initial conditions.

28

v

.
-, E—— - . - e e e e A ——_——— -~ e h e — '.“&-L_ﬁ
L & ia J & ‘ I . " .
g, ! A el R . PUPRERFg 250 SET SNV IR S TOR

——————

e

c. Calls CONTRCL.CML.
d. See Figures 1€6A and 1€6E in Appendix A.
3. CONTROL.CML - database control program

a. Calls procedures LCLMON.CML, PROC.CMD, DATA.CMT,

and FCRM.CMI trat develep the FL/1 "include” source code.

b. Eands the database program and irvokes the PL/1
programs.
4. LCLMON.CML - monitor declaration program

a. CTevelops LCLMON.TXT for the MONITOR.PLI program,

b. Calls MCNICL.CML.

5

. MONDCL.CML - develcps AA.TXT, AI.TXT, ID.TYT, ani
LA.TXT fnclude functions for “CNITOR.PLI.

6. PROC.CML - Levelops LCLFUN.XXX, INDUT.XXX, FUNZ.XXX,
ard OCUT.XXX for each function develcoped Dby the zontrol
engipeer to be vused in the approvpriate function AA.TLI,
AD.PLI, DD.PLI, or TA.PLI.

7. LATE.CML - data declaration croczedurs

a. Ievelops LATAINFO.TAT to be used i~ PRINT.PLI

b. TATAINFC,TAT contains valuadle format information
pertaining to the TATA.FLT file.

c. <alls DATA1.UNMT - additional data format fil=

a. CLevelops suomit file FO0SM.STJP used to coatrol the

order of PL/1 program zompiling.

b. Issues commands to reformat files containins a

backslash into files with a sericolon.

ny
"

— e M. i sl . B . e . PSRN o S S I S . PO

o <mtar v i e A

c. Calls LCLFUN.CML - function name setup for REFORM

d. Calls REFORM.CMD - general format for FL/1
compiling.

9. SHQORT.CMD — short compile program

a. ULevelopvs 1initial conditions for LCLMON.TXT and
MONITOR.PLI.

b. Issues commands to control the compiling of only
MONITOR.PLI by developing a subtmit file SFORM.CMI.

c. Calls SFORM.CML - short format for PL/1 compiling

similar to FORM.SUB called SFORM.SUB.

C. LEVEL #2 (PROGRAM DESCRIPTION)

Since the majority of the code 1is 1in higher level
languages, and is designed in modules, it is already |ir
algorithmic form, It iIs assumed trat the individual needing
to understand the code will be familiar with refarences 1
through 4; therefore, an extensive discussion of the computer
code will not be provided. The example problem will cover all
the features of the program,

The basic structure of the database includes a memory
file that contains the value of initial wvariables and a
database file that contains the functions and their
relationships to each other. The entire database program is
involved with manipulating and recalling information from the
two above mentioned files.

The 1initial memory file is showa in Figure 2 and |is

contained {in file INIT.MEM. Thbis file is provided so that

30

——

initial variables called will not produce errors in the
database program. The main variables of concern are:

1. T - discrete sample period,

2. T1 - analog sample period,

3. DLIMIT - end criteria for tne digital simulation,

4. ALIMIT - number of analog samples for each digital

sample.
5., LELAY - delays due to calculation ard conversion

- —

expressed as the number of analog counts after the sample
period T.
Unseen system variables include:

1. ACTION - users next menu selection,

2. PARAM - holds database program name,
3. CN - test variabdle,

4. FN - test variable,

5. TEMPQUT - temporary variaole,

6. ELEMENTS - data array position for a variabdle,

7. IND - index counter,

§. FUN - string of characters that is used to wuniaquely

9. LATAl - number of data array elemeats saved.

The basic structure for all functions i= shown in Figure
3 and is contained in file INIT.DBF. The initial values :f
the database are shown at the bottom of the Figure 3. The
only 1items the control designer sees are listed under the

NAME column of Figure 2. The user must enter values for the

31

ACTION
PARAM
CN

FN

T
CLIMIT
ALIMIT
TEMPOUT
ELEMEMTS
IND

FUN
TELAY
T
LATAL

P S~~~ g J— S~ p— P~ P P pr— p— g
CETZOXZOZZZZOOO00
N N el Nt S Sl N S Sl o St Vot sk ot

2
INIT
INIT
FUNCTION
1.000
10
5
002 .2990
g
0
AECLEFGHIJXLMNOPQRSITUVWXYZ
%
1.09¢
2

rigure 2

Variables Used for Initialization

STRUCTURE FOR FILE: INIT.LBF
NUMBER OF RECORLS: 00001
DATE OF LAST UPDATE: ¢0/00/0¢

PRIMARY USE CATABASE)
PLL NAME TYPE WILTH LEC
eo1 PUNCNAME C ees
202 FUNCTYPE c ge2
203 NR:INPUTS ¢ 201
204 INPUT:A ¢ 298
805 A1PZ2L C vo1
006 INPUT:B c ©0es
aov B1P2L C 001
228 INPUT :C c ¢os8
oS Cip2D c 201
010 INPUT:L ¢ 008
211 D1PZL C 001
g12 INPUT:E c o8
a13 E1P2T C ro1
214 FK N ¥o3 004
915 FXL N 098 o4
216 EQUATION c 85¢
217 SAVELATA L go1
g18 CATANAME c 685

* Below is a list of the values used in the initialization,
* These values correspond directly to tke structure above.

00021 MNEW FUNC
AT
e
ONE
1
TWO
1
THREE

1

FOUR

1

FIVE

1

e.00¢0

0.0000

AL(1)=0
F

AD(1)

Figure 3

Initial Latabase Values

23

P UI—

variables under NAME of the correct type and size specified.

The definitions for the varlables are given below:

1. FUNCNAME - function name used to identify this

function initialized to "NEW FUNC".
2. FUNCTIPE - describes this function’s type asi
a. AA - analog,
b. AD - analog to digital,
c. LI - digital,
4. DA - digital to analog.

3. NR:INPUTS - This 1is the number of other <fuactioas
this function uses for inputs. AL(x) and LA(x) registers are
not counted as functions. |

4. INPUT:A - This 1is a variable for name of fuaction
used as an input and is shown at tne bottom of Figure 3 as
"ONE". This value is referred to in the equations as IAP or
IAD for INPUT A PRESEINT or INPUT A DELAYEL.

5. Al1P2D - This 1is a code to tell tae computer tune

designer is talking abcut the "A° input and he wants either a
“1" for the PRESENT value or "2" for the LELAYEL value.
Entering a "1 will make bcth the present and delayed values
available but the program will run slower than if omly the
aelayed value is needed.

6. INPUT:B - This variable 1is identical to 4 atcve

except this is tne "B” input and has an initial name of T¥O'

as shown at the bottom of Figure 3. [INPUT:C, INPUT:L, and

i '-'-'-'-"'---lIllIlllll!lIll!lIllIl.llllllllllI-l!l-'l-I.|

asdbr e erivn [[P . . I I s i L L Lo SR VRN - . S s et mean e]

INPUT:E are the same as above which allows for up to five

inputs.

7. BLlP2L -~ This variable is the same as 5 above except
! it 1s for the "B" input function. C1P2L, D1P2D, and E1P2D all
have the same function except they are used with treir

respective inputs.

o e — -

8. F§{ =~ This functiom {is the present value of the
‘ function named under FUNCNAME above.
. FKL - this is the delayed or previous sample period
value of the function named in FUNCNAME (i=2., fK delayed).
186. EQUATION - this 4{is the equation for the function
named in FUNCNAME above. Thé equation takes three forms;
F = =~==——=—-—- this is & function,

AI(x) = —-===- value for an analog to digital,

DA(x) = ----- value for a digital tc analog.

g 11. SAVELATA ~ logical value indicating if the user wants
to save the value of this function for tabulation.
12, DATANAME - if it is decided to save the function then
what type functiom is 1it;

! F - the function itself,

AL(x) ~ one of the eight analoe to digital,

LA(x) - one of the eight digital to anal:g.
It should be noted that functions are of three types. If
the computer finds a location for the functior or it is 1ot
4 hardware dependent then the function is descrided as "FLOIf

the function is one of the other two types AL{x) or "Is x)°

~— - E E et S o esestorpepents e~y

dmatin 1 3 RPN P VORI R o v S D S

Lo | '

. . . I e e W LI A s S e e e s MR L L i e A
. e -

t

l ,
\

then they represent physical fixed registers within the

computer. If the l:tter two types are used as arguments in an
equation they are not listed as iaputs under NR:INPUTS for :
! ' the function. Since they are panysical registers they are

called by their name (ie. AL(5)) and not by IAP or I[AL.

j D. LOGICAL STRUCTURS

The logical structure discussed will be a general outline
of program flow. A complete discussion is covered 1in tne
example problem. Initially the control designer enters the
program by responding "IBASE MENU" to the CP/M operating
system prompt. This will place the program unaer control of

MENU.CMI which initializes the program and enters a CASE

statement that provides a menu selection shown {n Figure 124,
; At this point the designer usually starts a new problem or

4 : : recalls am old problem that modifications will be maée to.

. Notice that in order to save a problem the user must select
from this menu option. In general the next choice of the

3 designer 1is to enter the modification phase either sele~ting

to change only the initial conditions of an c¢ld problem -r
selecting to make ma jor changes. If major or new changes are
chosen the program transfers control to CMENU.CMD whewe ‘the
4 designer 1is allowed to change the function databdacse by menu
selections shown in Figure 16A. The choices are controlled hy
the CASE statement in CMENU.CML. Most selections are single

command entries followed by a "RETJRN" from the keyboard.

Some commands will operate without a ~RETUEN espectally if

the user has exceeded a field in one of the database records.
The fields are marked on the display with a ":” at each end
of the fiel&. On some terminals the arrovw keys may not always
work for positioning the cursor in a field desired. In this
case use CTRL E” (control key pressed at the same time as
the "E” key) to move the cursor up a field. Use "CTRL X to
move down a field and "CTRL C” to move down a complete
record.

Once the user is sure the database contains all ‘correet’
functions and relationships he should return to tre MAIN
PROGRAM” 1f he wants to save the information otherwise any
changes will te lost during compiling. The program could be
improved by adding a question in the CONTROL.CMC procedure
asking the user if he waats to save the information before
compiling. It takes more than fifteen minutes tc compile the
program so a few extra minutes checking for ~rcorrectuness
before compiling carn be well worth the effort.

Once the option to compile the program is takem, zontrcl
passes to CONTROL.CML. This is tke main control ©tprocedure
that causes the automatic ©vprogramming oy calling all
necessary procedures required to write the PL,1 scvrce code
from the database. A complete discussion of this procedwure is
contained in the example probdblem. after the PL/1 sourre .ode
is written, a control program is written on how to sompile

the PL/1 code. Finally the datadase transfers cont-ol to the

control program it just wrote, called FQRM.3UB, Dby . iting

37

the database and submitting FORM.SUBR to the CF/M operating
system. At this point the PL/1 programs are compiled and

executed.

A. GENERAL TISCUSSION (Refer to Appendix B)

k | ' This section descrides the PL/1 programs and hcw they
: interact to provide simulatiom of a computer controller for

an analog plant. There are five basic procedures consistiag

of a monitor that insures all functions are calculatei at
least once during each sample period of the computer, an
analog ©procedure for describing analog calculations. a
digital to analog procedure and analog to digital vproce:ure
for describing conversions, and a aigital p-ocedure for
describing computer calculations. There is only one monitor
but there are as many of the other procedures as needed to

describe the entire system model for each function. 4z an

example if there are two analog to digital equations in the
; problem then there would be two analog to digital nrocedures,

one for each equation. The example problem will demonstrate

the function relationships. Tha basic procedures require
information for each function and that is orovided ¢ty the
control engineer throueh the database program in the fom of

include files. Once the program 1s ready and <ompiled

automatically by the database program a result file zcalled

ANSWER.COM is produced. The problem is rum 3y typiae ~AN.¥ER’

g , to the C(P/M operating system prompt. 4s the oprogram is

running intermedjiate results are displayed on tne dis:lay

— e e R DTN TR

S e — = ::========-.‘

device for troubleshooting should the results not be as
expected., After the program runs it produces a file DATA.FLT
containing floating point data. This file can be translated

into a text file by typing PEINT FILE where FPILE is a name of

a file provided by the user that he wants the results placed
into.

PL/1 was chosen as the operating system language because
of several features, First it is a common high level language
that is transportable to many of the present microcomputers,
. The 1intent of this ©project was to keep the programs as
machine independent as possible and using FL/1 source code is
a &good way to do this. PL/1 also hras very 3good math
capabilities., Since the type of problems being solved ara
engineering 1in nature it was necessary to have a high 1isvel
matn language. Additionally, the aoilisy for PL,/1 to
communicate with the computer hariware is a definite asset if 7
} the programs are to be realized into rardware. 3evera: cther

languages were lookea at such as PASCAL but PASCAL dces not

have the ability to talk to the hardware. The 'C laneguace
was also looked at but it lacks the math capability. As
stated in Chapter IV.; hopefully, ADA will cverzcme all the
difficulties by comdining all the needed features into oae
language.

PL/1-5@ has some probiems. There ic a definite <ctroclem
with conversion factors as was discussed in Chapter [II. Thne

f " ’ main vroblems have to do with conversions teiween (f{loating

point and other forms. The original approach was to use only
floating point values and therefore not need comversions bdut
it was later discovered that several functions do conversions
rexardless of starting and ending types. This is a prctler
and cannot be overlooked by thke designer if he has probliems
with results. If equations requiring -cmplex functions are

used the desizner will need to Ge-ome familiar with FL/1.

., LEVZIL #1 (MAJCOR SUERRCUTINES &4ND P=QCELJRES)
1. MONITOR.PLI - main zontrol loop program

a. Causes iteratioa of ail fuactions.

b. Insures all functions are callez ir proper c-ier.

c. Saves data for later displiay and enalysis,

a. Calls all functions wsed as imputs.

b. Calculates and returns it“s own present or nast
values to all functions that call tt.

c. Insures syncironization of :cal-culations with <he
system clozks through event counts,

3. AL.PLI - bYasic format for all analcg tc di.ital
functions and performs iaentical functions to these chowa in
ca, 2b, aad 2: adove,

4. [L.2LI - basic fcrrat for all digsital fucctioas and
performs idemsi:al funztioms to tzose skhown ia 2 adove,

€. TLA.PLI - basic <fcrmat for all digttal <o aralog

functicae and performs ldentica. functions to those abdove,

6. REFORM.PLI - corrects all improverly formed PL/1
“"i{nclude” files by changing the backslash produced by ttre
BDASE Il vorogram into semicolons.

7. PRINT.PLI - utility program showing how to convert the
floating point file DATA.FLT produced by the main yprogram
into a different printable text file for display on the

system display.

C. LEVEL #2 (PROGRAM LESCRIPTION)

S5ince the majority of the code is 1iu higher level
languages, and is designed in modules, it is already in
algorithmic form. It is assumed that the individual needing
to understand the code will be familiar with references 1
through 4; therefore, an extensive discussion of the computer
code will not be provided. The examrle problem will cover all
the features of the program,

The Dbasic structure of the program uses a monitor that
sequentially calls all functions within tke computer once
during each digital clock. The system clock is used as an
event counter to provide synchronization for each function.
The functions are developed by the coatrol engineer throuzh
the database program and each functional relationship
indicating which functions call each other must be ovroverly
provided. This 1{s taken care of when the designer states
which functions are inputs to eack other. A function can nave

its output connected to any number of functions bdut a

42

V

function can only have five inputs not counting analog to
digital, digital to analog, and it°s own delayed output. The
function definition allows for very cemplex multiple
input/output relationships within any single equation. A
method for correcting for computation and other delays is

provided in the correction factor CF in the monitor. This is

———

a factor provided for the example problem; however, it is

felt that this equation will work for any control system of
the type requiring a steady state error signal of zero. The
CF is provided ©but carc be eliminated simply by not
referencing it in any ¢f the equations. The programs provided
are for simulation only but should be easily realized into

{ control hardware since the design equations will not change.

L. LOGICAL STRUCTURE

The +trogram contains a number of procedures that are

‘ bacic to all problems, These were discussed ahove.
Additionally each protlem Las wunigque features that are
provided by the control designer through the database
programs, These features are soded into PL/1 “include” files
and read ia at cormpile time. Once the programs are coded all
information as to which functions are connectec tocether will
bte provided. The monitor is a DO #HILE LOOP that calls all
analog to digital and digital functions once each «count cf
the clock. At each count of the digital clock (DCLCCK any
called function will verform it’°s own equation evaluation if

| : it has not already been calculated during this <clock and

: | v
I -

e

ra————

© e ey

return the correct value to the invoking function. When the.
monitor calls a function it does not use the value returned.
Additionally there is a DO WHILE LOCP inside the main monitor
loop used to call the analog functions the number of times
specified by the designer to occur between each dizital
sarmple period. This is the analog clock (ACLOCK). Also
during the analog clock when the ACLOCK is equal to the DSLAY
specified by the designer the digital to analog function |is
invoked, When a function is invcked, the first thing that it
does 1is check to see if it ras any inputs. If there are any
inputs then the input functions are called to insure they are
the correct value before the equation is calculated. ZEven
though the monitor 1is a sequential process inavoking ea-h
function, once a function is called it will invoke all of the
input functions aneeded for equation calculation. Some
functions <could bYe called many times durinrg each <clock
devending on how many other functions use it’s output. Cncze
each [L[CLOCK the monitor outputs values that have been
requested by the designer to save into a file.

The first oprocedures <called by tke monitor are all
digital to anslog functions located in a file written hy the
database program called "ad.txt . The functions take the form
dummy _ptr = FUNCTION_NAME where FUNCTION_NAME is the name of
the function and the ¢file FUNCTION_NAME contains the
necessary ianformation to represent the function. The example

problem has a more detajiled discussion. The first thing the

44

digital to analog functions do is call the analog functions
that are used as inputs. If these analog functions have other
analog inputs they call their inputs before calculating their
output results. This process will continue until the analog
functions have no inputs or their inputs come from a digital
to analog register that will contain a value for a correct
point in time. Similar processes occur for files “dd.txt’,
"da.txt”, and “aa.txt” representing digital, digital to
analog, and analog functions respectively. The «¢rder of
calling 1is controlled 1initially by the monitor and |is :
extremely important for all processes to obtain the correct
results. Tirect <coding of the vprocesses would be much more

} efficient but it must be remembered that tnese processes must
work no matter how the designer 1initially defined the

- problem. This method c¢f probdlem solution has merits =ven far
the experienced programmer. Even taough the ~code is longer
than direct programming this type of problem will typically
require one or two hundred files iatroducing the possibility
for syntax and other programming errors.

The four main functions aa.pli, ad.pli, dd.pli, and

da.pli all have the same general structure. Easically the
function s called by tne moniter cr another function, the
function calls any inputs, and then returas tke correct value
4 of the equation at tne time the equation was invoked. This
arraangement places a p{ocess on the stack through the PL/1

calling routine until all inputs are availatle eliminating

T ——

the need for developing a special process nénager. Using this
approach makes the programs easily adapted to <concurrent
processors and languages such as ALA. The conversion routines
ad.pli and da.pli do not bhave a provision for wusing their

delayed values since they would not be available 1in real

hardware. This forces a true representation of the hardware

and makes the designer provide intermediate holding functions
if delayed values are needed. Additionally the actual code
for hardware will be easier to implement at a later date. Tte
other functions dd.pli and aa.pli have provision te¢o return a
previously calculated value 1if only the delayed value is
desired. This allows the code to run much faster and provides
more powerful equations within a single function. £11 four
processes allow for up to five function 4inputs and the
procedure knows how to call those inputs bty using the
variable “nr_inputs” to determine to which 1label 1in the
function to Jjump. Basically all functions the designer

implements are written into one of the above four procedures.

As an example if the designer specifies a digital function
called DIGIT, the database will write the include files and
then compile the dd.pll procedure into a file TLIL.REL. Next
the compiled file LCD.REL will be copied imto CIGIT.REL wai-h
will now contain all the necessary information for the
function TLIGIT. Additionally the necessary information such
as the name LIGIT will be included into the monitor so that

it knows to call the function once e=ach clock period.

4€

VEe e geea

Before any of the PL/1 programé can be -ompiled, all the
text filles written by IBASE Il that contain a backslash must
be converted to semicolons. This is accomplished by the
procedure REFORM.PLI. This is a simple program that reads in
a file, 1translates the character, and outputs to a new file.
The files reading from and too are controlled ty the submit
files FORM.SUB or SFORM.SUB written by the LBASE II program.

The programs compile into & program called ANSWES.COM
under the control of the database program, ANSWER.COM is the
file npeeded to run the problem. The designer only needs to
place this file on a CP/M based system and type AN3SWER in
response to the operating system prompt. This will run the
program and s2nd the intermediate results to the display and
send the floating point data into a file called DATA.FLT.

Once the program has beea run it may bte desirei to vplace
the floating point data into a different form for display and
araiysis. This project can be g-reatly improved oy vroviding
the results on a graphical display device. ©Both tazular and
graghical results are supplied at the end of this paper and
the reader can determine fcr himself which is the ‘test
method, One wutility program proviaed is <called PxINT PLI.
Tkis oprogram reads in the floating point data by usinz the
information contained in the file DATAINFC.TXT as to how the
data was stored and tren sends the information into a text
file specified by the user. This text file rcan tren te

printed if desired,.

47

——

VII. EXAMPLE

A. INTRODUCTION

This part of the paper will make reference to all
asrects of the project and provides the easiest method for
understanding the entire paper. It should be noted that tke
descriptions as to how the data is entered and displayed {is
somewhat misrepresented since the entire project was designed
for an interactive environment. The actual data entry at
runtime {5 much more formal with data fields that allow only
specific entry in specific areas of very specific type. This
is not a coastraint but an aid. 4s an example if the user is
to vreplay if he wants to save the function results nre can
only answer with "T, 7, Y, or N" for "true, false. yes, or
no . The answers <can he in upper or lower case and i€ an
improper input is made such as "7 tke computer will BEEP and
wait for a correct response. Additionally some information is
supplied in reverse video or highlighted, In the event that a
color system is used such as the INTERCOLCOR the information
will be ia different colors. The only way to fully appreciate
the aids for the designer is to run the program. In order to
provide a realistic test for this program the sample problem
will include a plant that is at the limit of stability and is
initially designed to be <controlled by a bang bang

controller, The process will include a control 1lcop that

4€

S e

Seiatal

feeds back on itseif which provides a aefinite headache to
Computer programmers because ot the synchronjization problems.
b. PhOELEM SETUP

Assume we have a continuous 1/52 Plant and it is desired
to produce a minimum time response ripple free controller
L(k) ftor a unit step input. FReferring to Figure 4A below,
L(k) is the computer transfer function, T is the sample rate
of the input, L[is the delay from input sample at time T to
output sample 1including all computation and conversion
delays, and the clamp is included since the computer output

is held fixed between samples. Assuming that the clamp has a

-HD(k)—-—-/—h-»Clamp »Plant

Figure 4A

Computer and Plant Model

very short conversion delay compared to all other delays in
the digital system, the output of the clamp {s for all
practical purposes the same as the input to the clamp. This
has been Jemonstrated by many authors {Ref. &5]. The next
? initial assumption will be to ignore any delays due to

conversions and calculations in the computer (ie set I = @),

This will allow for simple design equations yet the gross
error in reasoning will be easily corrected for later. / It
should be noted that most control systems ignore the delays
' due to computer computation since the delays are usually
insignificant compared to the sample rate. !

By letting X2(t) = the volant output, X1(t) = d/dt(x2(t],
and letting the input to the plant be E2(t) ty ignoring the

effests of the clamp and computation delay, a set cf discrete

difference equations can be developed describing the piant at
the sample iastances 7. These equations have been developed

3 in the past by many authors [(kef. €] and are shown bhel-w in

discrete form:

X1(k+1) X1(x) + T * F2(k) 1)

X2(k+*1) = T * x1(k) + x2(x) - (T * 1) / 2] *= ZZ(x; (2"
where;
d/dt(X1(t)] evaluates to X1(kx+1
- d/dt{X2(t)] evaluates to X2(k+1l)
Now the next task is to control the plant described by
the equations ia 1 and 2 above according to the design

requirements for a wminimum time response ripple free

r - .
' C e ——
b i==============.-"'-------_-.___-

.controller. Since this i{s a second order system it will take
two time periods to obtain conmtrol. Assume the initial state
vector equals zero (le. X1(@) = X2(@) = @). Since we want the
second time state with X1(2) = @ or no ripple and ¥2(2) = 1,

i the input unit step, this leads to the set of equations delow

! ' after some manipulation:

T * 52(@) + T * 32(1) = O (2
[3x(T * T7)/2]*E2(2) + [(T * T)/2)*E2(1)

L E X1(2)

X2(2) 1 ‘4)

o Solving equations 3 and 4 above simultanecusly leads to-

' 22(e¢) = 1/(T * 1) 2
82(1) = = 1/(7 * T) (8)

(&)
(N
[=]
A.

By definition of the Z transform, equations 5 and

the fact tbat the desired output requires E2(k) = @ for k > 1

leads to:
g2(z) = 1/(T * T) - [1/(T * T)]z ' £7)
Now to find the Z transform of £1(x) w#e start with the
{ problem definition of zero initial ~onditions amd a unit step
iaput.
At k = @

~B1(Q) = U(2) - x2(2)
; e =1 - 2 = 1

, At ¥ =1
o E1(1) = U(1) - X2(1)

e _ 1 - [(T * T)/2) * r2(@)
1 = [(7*17)/2] * 1/(T = 7T)
=1 - 2.5

"
[\
n

. —— e - gy -
1

oy K. 20
S v
Y ﬁ!?’:'

At k =2
E1(2)

0(2) - X2(2)
=1 ~ 1 = 0
For K > 1 Ei(k) = 0
The above set of equations leads to the Z transfornm:
B1(z) =1 + 6.52-1 (8)

Since TI(z) = ©%2(z) / Ei(z), the algorithm for the

computer, we can now take the ratio of equations 7 and 2 and

Cross multiply then 1transform ¢to find the difference

equations needed.

and

-1 -1
{1 +2.52 J*g2(z) = [1/(T * 7)) * [1 - z 1#%*E1(z) (3)

E2(k) + 2.5%E2(k-1) = [1/(T * T)]*[E1(k) - E1(k-1)] ‘1¢)
B2(k) = - 9.5%E2(k-1) + [1/(T * T))*{E1(k)-E1(k-1)] '11)
Eauation 11 is the one used for the computer simulation

shown in Figure 4F along with the rest of the model.

Since it is not allowed to use subscripted or arrays fcor

variable names in this program implementation the following

changes have been made in Figure 45 for wvariables in

equatiors 1, 2, and 11:

the

tre

EXK = El1(k)
E1(k-1) referenced 3s the d2layed value of EK or IAL in
function ZZK.

E2X = E2(k)

52(k-1) referenced as the delayed value of 32K or "0 in
function EZK.

XIN = X1(k) or X1(n) if n different from Xk

Ran s iatalial

T AD(2) T+D
. I_/ﬂL Delay D
AD(1) DA(1)
N COMPUTER
—-—L———<r— ——————————).- ———————————————
+
+ XiN
™

UN

T™

PLANT

Figure 4B

Test Program Elock Liagram

53

Y

X1(k-1) referenced as the delayed value of XIN or "0" in
the function XIN and IAL in function X2N1,
X2N1 = X2(k) or X2(n) if n different from %
X2(k-1) referenced as the delayed value of X2(k) or 0"
in the function X2N1 and IAI in function ALZ2.
P UN = U(t)
T1 = [T *41] /]
In the 1i{nitial design the sample rate of the digital
L system T and the sample rate of the analeg system at discrete
points T1 were considered the same(ie. i = j). The only
reason for providing the possibility of <calculating the
analog values at different points is to see what happens to
the plant between sample points of the digital system at T.

’1 .

In most problems T and i1 will be normalized to wunity and
"3" will represent the number of sample points calculated by
| tke plant for each unit sample period T.

3 } Now to account for the combined delays imn the dis-crete

system due to analog tc digital, digital to analog, aad

computation delays. This function 1is <called CF c¢r the

Correction Factor. The C¥ in most systems 1is a major

consideration in initial equation development and wusually
resembles Kalman Filters or predictors. The apprcach taken
for this thesis was that tke average designer would not know

or could not estimate these delays due to system variables,

| This means the simulations would not work as expected and

needless to say neither would the realizations of the control

54

algorithms in the real hardware. The attempt was to force the
designer to consider the delays in his design and possibly
provide a good predictor initially for his use. It was
assumed that since this type control system requires an error
signal that {s zero when in control this would indicate that
the +signal 1{s zero mean., Since the instantaneous {input |is
random 1t was assumed the error c<ignal was gaussian and
provide a standard exponential predictor to the error signal

-L
to correct for delays. The predictor chosen was CF = e

where e is the natural log and L is the combined delays. The

CF is not a complete guess and further work will be presented
at a later date. The results of the CF to ttis particular
example can be seen in the plots at the ead of this paper.
Further research needs tc be done to see 1f this <correction
works for truncation, roundoff, or even noise in the input
signal. The point is that some type of correction needs to bHe
added and this one works very well in this case. If the CF is
rot wanted the designer only needs to eliminate it from any

of his equations.

C. AUTOMATIC PROGRA™ (Kefer to Appendix A and E)

The designer will initially enter the program hy entering
"LBASE MENU" and a RETURN to the CP/M operating system
prompt. This assumes the disk containing the LBASE progzrams
is in drive "p" and the disk containing the PL/1 programs is

in drive "E”, Tre system can be modified to run on a single

aisk as was done in the original system bdut the disx must

contain at least one megabyte and should have directory space
for at least one hundred fifty files. Ey using the orogram
setup requirements above the database {s entered by menu
selection "1" of Figure 154 to start a new program. This will
initialize the system and enter the menu selection of Figure
16A. Next if menu selection “S" is entered the initial
conditions of Figure 2 can be changed to the ones shewn in
Figure 5A., This i1s done by tte display menu CINIT of Figure
174, Note that some parameters of Figure 5A are effected bdy
returning to the maln menu and saving the program under the
name STRT, others are developed as part of the program
process such as ACTICN which changes each time a menu
selection is made, and others such as TATAl are developed by
the program 1itself counting the number of items that have
teen requested to save. As caa de seen from Figure £A,
ALIMIT was entered as 12 which means there will be 12 analog
calculations for each 4igital calculation. Since the initial
design used the same sample time for both tne digital and
analog then T1 must be adjusted to ¢€.1 as discussed
previously since T is normalized to 1. After the initial
conditions ALIMIT, DLIMIT, DELAY, T, and T1 are entered. the
program returns back to CMENU of Figure 16A.

Next assume menu selection "2" is selected and the
functions are added. The structure will remaln basically the
same with only slight changes shown {in Figure 5B, The

database for the problem will look something like that sktown

1 ’!!
ACTION (c) 3
PARAM (C) STRT
CN (c)
FN (c) FUNCTION
ELEMENTS (N) @
CLIMIT (N) 10
' ALIMIT (N) 10
: 71 (N) 2.1¢0
: FON (C) ABCIEFGHIJXLMNOPQRSTUVWXYZ
INT (N) 7
f T (N) 1.000
P LELAY (v) 4
; CATAL (N) 8 :
Figure EA i

Variables Used in STRT Initialization

k { STRUCTURE FOR FILE: STRT.LEF
NUMBER OF RECORLS: €0008
R TATE OF LAST UPDATE: 11/11/92
PRIMARY USE CATABASE -

; TLD NAME TYPE WIDTH DEC
ee1 FUNCNAME c ees
- 202 FUNCT YPE ¢ e02
j 203 NR :INPUTS c 001
204 INPUT : 4 c ¢ae
@35 A1P2L c 201
206 INPUT :B c ¢ee
0e7 B1P2L c 201
208 [NPUT:C ¢ ¢oe
8@e C1P2T c 201
210 INPUT : L c ¢os
¢11 D1P2D c ¢e1
212 INDUT :E c gos
g1 E1P2L ¢ eel
214 FX \ g0e 324
. 015 FXI N gos coa
e 216 EQUATION c ese
217 SAVELATA L ¢a1
) €18 TATANAME c ¢@s
Figure SB

; ‘ Structure for STRT

; &7

in Figure 6A - 6T below. EKeep in mind that the display looks
quite different due to color, highlighting, or reverse video.
Also, only one record at a time will be on tke screen.

The remainder of the menu programs will not bte covered
since they are self explanatory. It should be noted that in
order to save *the problem the designer is working on, he must
first return to the main menu and then save the ©parameters.
The program will ask for the name of the file the user waats
to save the program in. The example problem was saved in file
STRT. If there are questions about the menus look at
procedures MENU.CMT and CMENU.CMI in Appendix A. After all
functions are entered CORRECTLY, and the program is saved if
desired, then enter "g¢" for menu selection in Figure 1€A.
This will cause tke program to enter the autoratiz
programming phase. (Take a break because it will take abdout
fifteen minutes,) If tke program fails to compile it will
probatly ©be due to improper naminz of functions. Functien
names caanot bYe arrays. If the results are not as expected,
even though the program compliles, then the equations are
probably 1in érror or there {s a strange coaversion imn PL/1.
If this happens then unfortunately references 2 throuzh 4
must be studied.

Once compiling begins control passes to CONTROL.CML., The
first function called is CCLMCN.CML which writes the monitor

declarations TICLMON.TXT for MONITOR.PLI and files 23A.T7TT,

AL.T7TT, LL.TTT, and DA.TTT containing the procedure calls for

. ‘ R

RECORD @0001 ;
FUNCNAME
FUNCTYPE
NR:INPUTS
INPUT:A
A1P2T

; INPUT:B
' B1P2D
‘ INPOT:C

HeO8»q
=9

= e Z s P> 2Z

o

HXEE

. C1P2T
i INPUT:D
} L1P2L
' INPUT:E
E1P2D
FK
' FKL
EQUATION
SAVELATA
CATANAME

[k R Ll Ll
-3
t=1

oe =4 o6 O oo
(o]
=i

1.0000:
0 .00C0:
1.2000 :

86 €0 90 80 B8 60 eq 00 00 o0 8 05 O8 80 0¥ 0 Os b
e 1l

=g =3 g

: RECORD 00282
FUNCNAME
- FUNCTYPE
, NR:INPUTS
f INPUT:A
A1P2T
i INPUT:B

Fee Z oov MR
= e

o

B1P2L
INPUT:C
C1P2D
INPUT:L
L1P2T
INPOT:E
i ElpP2r
FX
FKD
EQUATION :
SAVETATA
DATANAME

23]
t=3
=1

<
=1

el Ll Ll Rl T oo R o N5

es =t oo (O se I} 0o
(=]
oo

€.0000:
?.0000:
(AL(1)-AT(2))*CF

@ %5 30 €9 00 80 e¢ % S8 48 60 se R0 v 6 e

[EE R
e W

se oo

- Figure 6A

Tatabase For Example Problem

o
10

] RECORL 20003
FUNCNAME
FUNCTYPE

‘ NR:INPUTS
INPUT:A

‘ A1P2L

N INPUT:B

B1P2D

L INPUT:C

{ CiP2r

; INPUT:D
L1P2T
INPUT:E
E1P2T

\ ‘ FK

FKD

EQUATION

SAVETATA

é DATANAME

! RECORL 00024
" FUNCNAME
, FUNCTY PE
| NR:INPUTS
f | INPUT:A
ALP2D
| INPUT : B
B1P2I
| INPOT:C
c1p2r
INPUT:L
D1P2D
INPUT:E
E1P2T
7X
PXL
EQUATION
SAVELATA
TATANAME

s E2K :
:IL:

1

+ 8K :
sl

190 :
s1:

:THREE

t1:

:FOUR H
t1:

tFIVE

:1:

T 0.0000:
T 0.0000:
tF=(IAP-IAL)/(T*T)-.5%0
-

13

sX1IN

tAA:

H"

sONE

t1e

T

21

¢:THREE

21

sFOUR :
21

FIVE

1:
¢.0000:
2.0000:
1F=TA(1)*T1+0
:T:

.
. .
. .

ee 20 oo os

Figure €B

Latabase For Example Problem

690

RECORD 00005

FUNCNAME :X2N1 :
FUNCTYPE sAA:
NR:INPUTS :1:

| INPTIT:A X1 :

; Al1P2D 128

| INPUT:B :TWO :
B1P2L sl

: INPUT:C :THREE :

}“ C1P2L 21

: INPUT:L :FOUR :

. D1P2D :1:
INPUT:E tFIVE
E1P2C s1:
FX : 0.0000:

t FXL : 2.0000:
ECUATION tF=TA(1)*T1%T1/2+[AT*T1+0
SAVEDATA : T
CATANAME :F :

—— e

RECORD ©¢0@06

FUNCNAME tAT1 :
™~ FUNCTYPE tAl:
; NR:INPUTS :1:
: INPUT:A :UN
_ AlP2T :1:
i INPUT:B s TWO s
B1P2T :1:
INPUYT:C :THREE :
C1P2D 2l
INPUT:T +FOUR :
T1P2C tl:
INPUT:E sFPIVE :
E1P2T sl
FX : 0.2200:
FKD : 0.0000:
ECUATION tAL(1)=IAP
- SAVETATA 2T
' DATANAME tAD(1):

- Figure §C

Catabase For Example Problem

RECORL @@@ov

FUNCNAME
FUNCTYPE
NR:INPUTPS
INPUT:A
A1P2T
INPUT:B
B1P2T
INPUT:C
C1P2D
INPUT:LC
T1P2T
INPUT:E
E1P2T

FX

FKD
EQUATION
SAVELATA
DATANAME

RECORL 00003

FUNCNAME
FUNCTYPE
NR:INPUTS
INPUT:A
AL1P2L
INPUT:B
B1P2D
INPUT:C
Cilp2r
INPUT:T
L1P2T
INPUT:E
E1P2D

FX

FXT
EQUATION
SAVEILATA
CATANAME

Latabase For FExample Probdlem

tAD2 :

sAT:

s1:

:X2N1 :

2

:TWO :

H 8

:THREE :

tl:

+FOUR :

H B

tFIVE :

H

: 0.0009:

s 0.0000:

tAL(2)=IAT :

:T:

1AD(2):

DAL

:TA:

tl:

22X :

tl:

:TWO :

HE

:THREE :

:1:

.FOUP :

FIVE

sl

: 0.0000:

¢ 0.0000:

tDA(1)=IAP

tT:

:LA(1):
Figure €D

€2

LTI <~ﬂ-IlIIIIIllllllllIE==II!Ill---------f11

- e oy
~
Ay — 1

the monitor. See Figure 7. Next PROC.CMI i{s invoked for each
j of the four types of functions. Thkis procedure writes tke

declarations for each function called DCLFUN.XXX wkere XXX

stands for which function number it is (ie. A, B, C etc. and
i the last two XX indicate the function type (ie. A, AL, LT,
' LA). PROC.CML also writes the function input files INPUT.XXX,
function equation files FUNC.XXX, and tke output files
QUT.XXX that are used to indicate which element in the data
array each function represents. See Figures 84 through g8a.
The next function invoked is DATA.CMD. This procedure writes
the file TATAINFC.TXT that tells how many functions are
stored in the floating point file CATA.FLT and the 1location

of each element. See Figure 9. Next the program passes

.,

control to FORM.CML. This procedure writes the program that
tells the computer what to do with all tae files that have
just been written. Basically it rroduces a CP/M SURMIT file
3 that tell the system to reform or correct all files that have
a Dbackslash into files containing semicolons, then {t tells

the system to compile each function and place it under it’s

own wunique function name, After compiling each fun~tion it

links them all together into one proegram called ANSWER.COM.

See Figure 12. PFinally after the database program writes the
{ SUEMIT »program it passes control to the program it just wrote

£ and creates the simulation program ANSWER.COM as Just

mentioned.

/* TCLMON.TXT */

UN ext entry(fixed (7)) returns(ptr),
X1N ext entry(fixed (7)) returns(ptr),
X2N1 ext entry(fixed(?7)) returas(ptr),
AT1 ext entry(fixed (7)) returns(ptr),
AT2 ext entry(fixed(7)) returns(ptr),
DAl ext entry(fixed(?)) returns(ptr),
EX ext entry(fixed(?)) returns(ptr),
E2K ext entry(fixed (7)) returns(ptr),
T float static ext init(1.0000),

T1 float static ext init(6.1¢09),
DLIMIT fixed static init(1@),
ALIMIT float static imit(12),
d2lay float static init(4),
1 dat ext,

2 data(8) dec(15,6)

AA.TXT */
dummy_ptr = UN (code)\
dummy_ptr = X1N (code)\
dummy_ptr = X2N1 {code)\
AL.TXT */
dummy_ptr = AT1 (zode)\
dummy_ptr = AL2 (ccde)\
LT.TXT */
dummy _ptr = EK {ccde)\
dummy _ptr = E2K (code)\
LA TXT =/
dummy_ptr = DAl (code)\
Figure 7

Monitor [eclarations and Fuactions

€4

/% DCLFUN.AAA %/

UN sproc{code) returns(ptr)\
dcl
nr_inputs fixed(?) static inmit{(2),
] ONE ext eatry(fixed(?)) returas(ptr),
TWO ext entry(fixed(7)) returas(ptr),
g THREE ext entry(fixed(7)) returns{ptr),
. FOUR ext entry(fixed(7)) returns(ptr),
i FIVE ext entry(fixed(7)) returas{ptr),
cod(5) fixed(?7) static init(l,l,l,l,lg.

F float static init(1.0@9¢0),
0 float static init(0.0000)\
dcl

1 dat ext,
- 2 data(&) dec(15,6)\

et
e r——

CONTROL SYSTEMS. */
dcl
1 IA based(ia_ptr),
2 IAP float,
-) 2 IAT float,
! \ 1 B based(ib_ptr),
f 2 IBP float,
‘ 2 IBL float,
) 1 IC based(ic_ptr),
; 2 ICP float,
2 ICT float,
- : 1 ID based(id_ptr),
’ 2 ILP float,
2 [IT float,
} 1 IE vased(ie_ptr),
2 1EP float,
2 IEIL float;
/* INPUT.AAA */
1 : input{1) = ONE
input(2) = WO
input(3) = THREE
input(4) = FCUR
input (S) = FIVE
/* FUNC.AAA %/

PP A

F=1.06209Q
B /% QUT.AAA */
s data{ 1) = frc(¥®

N
put skip list(“data(1) = “,F AN

Figure %A

Puaction Teclarations and Zquations

€2

b /* LCLINP,TXT - THIS IS PART OF ALL FUNCTIONS ANL WAS
FIXED FOR THE TEESIS CASE OF NUMERIC

/* TCLFUN.BAA */

X1N :proc{code) returns(ptr)\

dcl

ar_inputs fixed(?) static init(e),

ONE ext entry(fixed(?7)) returns(ptr),
TWO ext entry(fixed(?7)) returas(ptr),
THREE ext eatry(fixed(?)) returas(ptr),
FOUR ext entry(fixed(?)) returns(ptr),
FIVE ext entry(fixed(7)) returns(ptr),

cod(5) fixed(?7) static init(1,1,1,1,1),.
F float static init(0.2000),
0 float statiz init(@.02000)\
del
1 dat ext,
2 data(8) dec(15,€6)\

/* DCLINP,TXT - THIS IS PART OF ALL FUNCTICNS ANI WwAS
FIXEL FOR THE THESIS CASE OF NUMEERIC
CONTROL SYSTEMS. */
dcl
1 IA based(ia_ptr),
2 IAP float,
2 IAL float,
1 IB based(ib_ptr),
2 IBP float,
2 IBL flcat,
1 IC based(ic_ptr),
2 [CP float,
2 ICL float,
1 IT vased(id_ptr),
2 IDP float,
2 ILL float,
1 IE dased(ie_ptr),
2 IEP float,
2 IEL float:
/* INPUT.BAA */

input(l) = ONE \
input(2) = T¥O \
input(3) = THREE \
input(4) = FOUR \
input(S) = FIVE \
/* PUNC.BAA */
F=DA(1)*T1+0

/* OUT.RBAA */
data(2) = ftc(F N i
put skip list(’data(2) = °,F N

Figure 2%

Punction Teclarations and Equations

€6

/* LCLFUN.CAA */

X2N1 :proc(code) returns(ptr)\

dcl

ar_inputs fizxed(?) static imit(1),

X1N ext entry(fixed(7)) returas{(ptr),
TWC ext entry(fixed(7)) returns(ptr),
THREE ext entry(fixed(7)) returas(ptr),
FOUR ext entry(fixed(7)) returas(ptr),
FIVE ext entry(fixed(?)) returns(ptr),

cod(s) fixed(?) static init(2,1,1,1,1),
F float static init(2.0000),
0 float static init(0.0000)\
del
1 dat ext,
2 data(3) dec(15,86)\

/¥ CCLINP.TXT - THIS IS5 PART CF ALL FUNCTICNS ANLT WAS
FIXED FOR THE THESIS CASE OF NUMERIC
CONTROL SYSTEMS., */
decl
1 IA based(ia_ptr),
2 TAP float,
2 IAL float,
1 IB bvased(idb_ptr),
2 IBP float,
2 IBL float,
1 IC based(ic_ptr),
2 ICP float,
2 ICL float,
1 ID based(id_ptr),
Z ILP float,
2 ITL float,
1 IE based(ie_ptr),
2 IEP float,
2 IEL flcat;
/¥ INPUT.CAA */

input(1) = X1IN \
input(2) = T¥O \
input(3) = THREE \
input(4) = FOUR \
input(5) = FIVE \

/* FUNC.CAA =/
F=LA(1)*T1*T1/2+IAL*T1+0

/¥ GUT.CAA */

data(3I) = ftc(F AN

put skip list(’data(23) = °,F JAN

Figure E&C

Function [eclarations and Eguations

/% DCLFUN.AAD */

érl sproc(code) returns(ptr)\
cl
nr_inputs fixed(7) static init(1),
UN ext entry(fixed(?)) returas(ptrj,
TWC ext entry(fixed(?)) returas(ptr),
THREE ext entry(fixed(7)) returns(ptr),
| FOUR ext entry(fixed(?)) returns(ptr),
: FIVE ext entry(fixed(7)) returns(ptr),

| cod(5) fixed(?) statie inmit(1,1,1,1,1),
1 F float static init(©.0¢29),
f ‘ 0 float static init(¢€.2000)\
| icl
' 1 dat ext,
2 data(8) dec(15,6)\

/* DCLINP.TXT - TEIS IS PART OF ALL FUNCTIONS AND WAS
FIXEL FOR THE THESIS CASE OF NUMERIC
’ CONTROL SYSTEMS. */
dcl
1 1A based(ia_ptr),
2 IAP float,
2 IATL float,
1 IB based(ib_ptr),
2 IBP float,
2 IBL float,
: 1 IC bvased(ic_ptr),
2 ICP float,
2 ICL float,
1 IT based(id_ptr),
. 2 IDP float,
; 2 ILL float,
1 IZ based(ie_ptr),
2 IEP float,
2 IEL floats
/* INFUT.AAL */

input(1) = UN \
input(2) = TWC \
input(3) = THREE \
input(4) = FCUR \
iaput(s) = FIVET \
/* FUNC.AAT */
AD(1)=IAP
/* QUT.AAT */
- data(4) = ftc(AT(1))\
3 put skip list(’data(&) = “,AT(1))\

Figure EL

Function Leclarations and Fquations

€&

j
v
|

1

i

’ . [o e ~

/* LCLFUN.BAL */

AT2 tproc(code) returns(ptr)\

dcl

nr_inputs fixed(?) static init(1),

X2N1 ext eatry(fixed(?)) returns(ptr),

TWO ext eatry(fixed(7)) returas(ptr),

THREE ext entry(fixed(?)) returas(ptr),
: FOUR ext entry(fixed(7)) returas(ptr),
‘ FIVS ext entry(fixed(?7)) returns(ptr),
i ‘ cod(5) fixed{?) static 1nit(2,1,1,1.1§.

] f F float static init(©.2000),
: Q float static init(2.2098)\
; dcl
! 1 dat ext,

2 data(8) dec(1%5,6)\

/% LCLINP,.TXT -~ THIS IS PART OF ALL FUNCTIONS ANT WAS
‘) FIXED FOR THE THESIS CASE CF NUMEEIC
5 CONTROL SYSTEIMS. */
dcl
1 IA based(ia_ptr),
- 2 IAP float,
3 2 IAT float,
; 1 I3 based(id_ptr),
\ 2 IBP float,
2 IBRL float,
“ 1 IC based(ic_ptr),
2 ICP float,
2 ICT float,
1 ID based(id_ptr),
' 2 ILP float,
3 2 IIT float.,
1 IE bdased(ie_ptr),
2 IEP float,
2 IET float;
/* INPUT.BAD */

input(1) = XaN1 \
input(2) = TWO \
iaput(3) = THREZE \
input(4) = FOUR \
input(s) = FIVE \
/¥ FUNC.BAL =/
AL(2)=IAL

/* OUT.BAL */

R data{ 5) = ftc(AD(2))\
‘ put skip list(“data(&) = ",aL(2))\

Figure SE

Function Leclarations and Equations

o
({8}

e

/* LCLFUN.AIT */

gxl sproc(code) returans(ptr)\

c

nr_inputs fixed(7) static init(e),

ONE ext entry(fixed(?)) returas(ptr),
TWO ext entry(fixed(7)) returans{ptr),
THREE ext antry(fixed(7)) returas(ptr),
FOUR exi entry(fixed(?7)) returas(ptr),
FIVE ext entry(fixed(7)) returas(ptr),

coa{5) fixed(?) statiz init(1,1,1,1,1),
F float static init(0.¢@20),
0 float static init{(0.2200)\
dcl
1 dat ext,
2 data(B8) dec(15,86)\

/* DCLINP,TXT - THI3 IS PART CF ALL FUNCTIONS ANT #AS
FIXEL FCRKR THE THESIS CASE OF NUMERIC
CONTROL SYSTEIMS. */
dcl
1 IA based(ia_ptr),
2 IAP float,
2 IAL float,
1 IB based(ib_ptr),
2 IBP float,
2 IBL float,
1 IC based(ic_ptr),
2 ICP float,
2 ICL float,
1 ILC based(id_ptr),
2 IDP float,
2 IIL float,
1 IE based(ie_ptr),
2 IZP float,
2 IET float;
/* INPUT.ALL */

input (1) = ONE \
iaput(2) = TWO \
tnput(3) = THREE \
input(4) = FOUR \
input(5) = FIVE \

/* FUNC.AIL */

F=(AD(1)=AD(2))*CF

/* OUT.ALL */

data(6) = ftc(F)\

put skip list(’data(6) = °,F N

Figure &F

function Leclarations and Zguations

e

L S e e e e e

FUUCIEY GRS

/* LCLFUN.BIL */

E2K :proc(code) returans(ptr)\

decl

ar_inputs fixed(?) static init(1),

EK ext eatry(fixed(?)) returas(ptr),
TWO ext entry(fixed(?)) returnsiptr),
THARE ext entry(fixed(?)) returas(ptr),
FOUR ext entry(fixed(7)) returns(ptr),
FIVE ext entry(fixed(?)) returns(ptr),

cod(5) fixed(?) static inmit(1,1,1,1,1),
F float static init(0.0¢00),
0 float static init(0.0000)\
del
1 dat ext,
2 data(8) dec(15,6)\

/% LCLINP.TXT - THIS 1S PART OrF ALL FUNCTIONS AND WAS
FIXEL FOR THE THESIS CASE OF NUMERIC
CONTROL SYSTEMS. */
dcl
1 IA based(ia_ptr),
2 IAP float,
2 IAD float,
1 IB based(ib_ptr),
2 IBP float,
2 IBD float,
1 IC based{ic_ptr),
2 ICP float,
2 ICD float,
1 IL based(id_ptr),
2 ILP float,
< IDD float,
1 IE based(ie_ptr),
2 IEP float,
2 IED float:
/% INPUT.BLL */

input (1) = EX \
input(2) = TWO \
input(3) = THEEE \
input(4) = FOUR \
input(s5) = FIVE \

/¥ FINC.BIL */
F=(IAP=IAD)/(T%T)-.5%0

/* OUT.ELT */

data(7) = ftc(F N\

put skip list(’data(7) = °,F N

Figure &G

Tunction Leclarations and squations

71

il Sofinh o’ ..

L et - vz

/* LCLFUN.ALA */

ia% sproc(code) returns(ptr)\

c

ar_inputs fixed(?) static init(1),

E2K ext entry(fixed(7)) returas(ptr),
T&C ext entry(fixed(7)) returns(ptr),
THREE ext entry(fixed(?)) returas(ptr),
FCUR ext entry(fixed(7)) returns(ptr),
FIVE ext entry(fixed(?)) returans(ptr),
cod(5) fixed(?) static init(l,l,l,l.lg.

F float static init(0.0000),
0 float static init(@.zgeo)\
dcl
1 dat ext,
2 data(3) dec(15,6)\

/*¥ TCCLINP,TXT - THIS IS PART OF ALL FUNCTIONS ANL WAS
FIXEL FOR THE THESIS CASE OF NUMERIC
CONTRCL SYSTEMS. */
icl
1 IA based(ia_ptr),
2 I[AP float,
2 IAD float,
1 1B based(ib_ptr),
2 IBP float,
2 IBD float,
1 IC based(ic_ptr),
2 ICP float,
2 ICD float,
1 IL bvased(id_ptr),
2 IIP float,
2 IDD float,
1 IE based(ie_ptr), 1
2 IEP float,
2 IED float;
/* INFUT.ALA */

input(1) = E2K \
input(2) = TWO \
input(3) = TYREE \
tnput(4) = FOUR \
input(3) = FIV3 \
/* FUNC.ALA */
LA(1)=IAP

/* QUT.ADA */
data(&) = ftc(LA(1))\
put skip list(’data(8) = “,LA(1))\

Figure £B

Function [eclarations and Equatioas

72

}

/¥ LATAINFO.TXIT */

timel fixed static init(100),
nr_data fixed static init(8),

nr_aa fixed static iait{ 3),
nr_ad fixed static init(2),
nr_dd fixed static init{ 2),
ar_da fixed static iait{ 1),
name(9) char(g&) static init(
’UN 4 .

“X1N -

“X2N1 .

:ADl ’ .

‘AD2 e

IEK 4 .

’sz ’ ,

“TAl)

Figure 9

LATAINFO.TXT

o e

/* FORM,SUE */

XSUEB

REFORM AA.TXT AA.TTT
REFORM AD.TXT AD.TTT
REFOR™ LL.TXT I[L.TTT
REFORM LA.TXT CA.TTT
PLI MONITOR

REFORM INPUT.AAL INPUT.TTT
REFCRM LCLFUN.AAA CCLFUN.TTT
PIP FUNC.TXT=FUNC.AAA

REFORM OUT.AAA OUT.TTT

PLI AA

PIP UN.REL=4A.5REL

REFORM INPUT.BAA INPUT.TTT
REFCRM™ LCLFUN.BAA DCLFUN.TTT
PIP FUNC.TXT=FUNC.EAA

REFORM QUT.BAA OUT.TTT

PLI AA

PIP XIN.REL=AA.REL

REFORM INPUT.CAA INPUT.TTT
REFORM CCLFIN.CAA DCLFUN.TTT
PIP FUNC.TXT=FUNC.CAA

REFORM OUT.CAA CUT.TTT

PLI 4A

FIP XZN1.REL=AA.RFL

REFORM INPUT.AAD INPUT.TTT
REFORM LCLFUN.AAT LCLFUN.TTT
PIP FUNC.TXT=FUNC.AAL

REFORM CUT,AAT OUT.TTT

PLI AL

PIP AD1.RZL=AT.REL

REFORM™ INPUT.BAL INPUT.TTT
aFFCRM LCLFfUN.BAT LCLFUN.TTT
PIP FUNC.TXT=FUNC.BAL

REFORM CUT.BAL QUT.TTT

PLI AT

PIP ALZ.REL=AL.SAEL

Figure 1¢A
FORM.5UE

74

acallaasli Shihodeak o taciae e o Lo o g i

REFORM INPUT.ATT INPUT.TTT
REZFORM DCLFUN.ADD DCLFUN.TTT
PIP FUNC.TXT=FUNC.ATL

REFORM OUT.ALL CQUT.TTT

PLI DD

PIP EK.REL=LL.REL

REFCR™ INPUT.BLT INPUT.TTT
REFORM LCLFUN.BIL LCLFUN.TTT
PIP FUNC.TXT=FUNC.BLL

RZFORM 0OUT.BLD CUT.TTT

PLI LT

PIF E2K.REL=LL.REL

o am——
1

REFORM INPUT.ATA INPUT.TTT
REFORM LICLFUN.ATA LCLFUN.TTT
PIP FUNC.TXT=FUNC.ATA

) REFORM OUT.ALA OUT.TTT

| PLI LA
PIP DAl.REL=DA.RLL

PLI PRINT
LINK PERINT

LINK ANS#ER=MONITOE ,UN ,X1IN ,X2N1 ,AD1 ,ADZ ,DA1 ,iK ,E2K

Figure 1¢3

FORM.SUB

L. TEST KESULTS ANI PROGRAM EXECUTION
As mentioned previously, once tke xzwgzag ANSWER.COM {s
developed, all that is necessary is to enter ANS4ER to the
cP/» operatinz system promot. ¥Figure 4B and © should be
! _ referenced during this discussion. Figure 11 is a partial
j printing of what will be on tie display when the orogram is
;“ executing. The oprintout is for the sample rroblem but with
: the TELAY set to zero and the LLIMIT shortened. The first
thing to note is that the functions are not executed in -rder
' _ and some are evecuted several times during each clcsk. Time @
actually runs from LCLOCK = @ to ACLCCK = 1. Ey associating

the data element number with the order ¢f the function 1ames

b i in figure ¢ the user can determine which fun:tion is ©eing
v calculated or called. 3is an example the first element
; ‘ returning an answer in Figure 114 is element 4 which =quates

to ALl in Figure ¢. The next elements are £, €, aand 7 that

; equate to AL2, 5K, and 32X respectively. An important ncte is

that since there is no delay, function 3 (IAl) or the disital
to aralog funztion is calculated or called at tine 3. This
will not Dbe the case when discussed later on. Th2 only
; function that has a value is element 1 or JN. There is 20
further <changes 13 the data until DCLCCX = 1 which is tne

- same time as ACLJCK = ¢ for the second time. At this voint

the analog to dizital conversion has taken place for the

first time, the computer does internal calculation, digital

Ir
E ; ‘ to analog is complete since taere is no delay, and the analog

7€

- . S B o e e ———— -t - - -
. - by G
. R ;,“".;»_“ [" Ry
i, B . — - < e -
——— ———
M‘ - i N . I Y]
htintiiatedisatiokolinimmesiniiont ottt condtoi it iuon.. kit PN L it D ——

— g

plant starts to integrate the signal. This is really the

start of the sample since the computer is operating on the
initial <conditions for the first te; counts of the analog
clock. By the first sample period after the initial values
(LCLOCK = 2) the comtroller output changes tc -1 and thre
plant output is at the half way value of the input. ZEFy the
setond sample period after the initial conditiors (DCLOZK =
3) the plant output is equal to the forcing function i-nut
ana the controller output is @. It shculd be noted tha*t 1in
all programs the zero point of the sample period always
starts at ICLOCKL = @ so that the initial coaditions cas be
sraphed. The avbove example i{s a théoretical non reaii-zatle
simulation of a control system with no calculation delays.
The results obtained are identical to <classizal textinck
examples.

Figure 12 1{is the identical prouvl-m dis-ussed w«with +the
delay -equal to zero but it shkows what thre dicsplay file Iroxs
like after the utility program PRINT.PLI is run. The results
in Figure 12 are obdviously more readatle since the frunoticon
name and final wvalue are 7ot jreserted wuntil after all
calculations are comgplete.

figure 13 is a partial printinz c¢f the resuvlts wzen asirng
tke full example presented abderve with a forty percent delay.
Tkis means there is four ACLOCK counts after tke TCLCCK
before tne digital to analog values are aviilatle., The

importart points to note are that the d1isital te¢ anales

77

e — e - -

, e oy o R
. . o [. PR IPe M S e
L M . e T . : !‘Y".m . “
. et < 4m At

1

-

o

values (DAl or function 8) do no changs until the analag
clock (ACLOCK) is equal to 4 during each dizital clock, the
overshoot is only about 2.5 percent, and it takes five times
as long to reach stability or the input signal. These results
are much more representative of a real world problem and the
problems that would bYe eancountered with a true herdware

implementation.

75

data(
data(
data(
data

data(
dataf
data(
data(

data(
data(
data(
data(

data(
data(
data(
data(

data(
data(
data(
data
data(
data (
datal(

datal
data(
data(
data(
datal(
data(

datal(
data(
datal
data(

datal
data(
data(
data

ANSWER.COM Runtime pesuits

[NV Gl DO = (ER RSN ¢ B Ko Y& T
~—r e e b s e e D) e e)

R E YO RGN R o

AONE- D
e e ot) e e e e B i e v e v () S e S v e o B e e e e D)

W DNIN

AN N -

LCLOCK
2.CC0C20E+20
@.000000E+00
?.00C000E+020
0.0C0C00QE+2¢

CLOCK]
€.0C0008E+69
1.000000E+20
2 .000000E+C0
0.000CCRE+0

clLock 1
1.600000E+¢0
2.2000005+0¢
2.000000%+90
¢ .000000E+02

LI U L - T IO T (O

(o]
[
>

;CK >
1.0CC000E+00
£ .000000% +00
¢.000000Z+20
0.00000CE+0Y
CLCoCK
1.0000@0E+00
1.000020E+0Y
0.0000005+2u
2.000000L+00
1.002000F+¢0
1.0€00¢0 5+¢@
1.0000€0E+40
CLCCK 1¢
1.0€0002z+02
1.000600Z+v0
1.00000dE+¢d
1.000000E-21
1.000032@E-21
4,.G8C859E 28
ACLICK 11
1.0¢0000E+00
2.C002005-¥1
2.20€000E-01
l1.060c56n-¢2

Lot LU O T I N T IO N T (N © O o O T O 1 IO = d

1.022020E+40
2.0060udE-C1
3..000008~¢ 1
4.4SCSECE-22

Cwe o W

[T T = | O I 1}

Figure 114

<«

-
te

cLocx le

o T TEEE R A TR R D TR e T

data(
datal(
data(
data(

data(
datal(
datal(
data(
datal
data(
datal

data(
data
datal
data(
data(
data(

data(
data(
data(
data(

data(
datal(
data(
datal
data(
data(
data(

data(
data(
data(
data(
data(
data(

data(
datal(
dataf(
data(

ANS

ACLOCK 1¢
= 1.0C0€¢00E+20
1.000¢00E+20
1.000¢23E+C0
@ .500000E+00
CLOCK
1.00C000K+¢@
1.000000E+30
0 .500000E+00
0 .500000E+00
@.500000E+00@
©.5C0C20E+20
-1.0000C0E+CY
ACLOCK 20 7
-1.0¢0020E+L0
-1.000¢C0Z+¢?
1.00C0Q00E +20
€ .9000800E+CY
2.3000005+00
4.5C500QBE+0¢

LN N

e et ot e e Q) i et e D) s (D

GO R R EOEGRE N
L LU T T T I o O O I (|

LI I (]

ACLOCK
1.0€020C0E+¢e
1.49¢116kE~4c
1.40¢116E~-08
1.202000E+0wg

CLCCK
1.000000E+20
1.020200E+L2
1.CC0000%+20
1.2020CC0x+80
Z.200000%+¢C
2.20CeC0z+00
2.000000T+20

CLCCX e
2.00000CE+¢2
0.9C0C2QE +10
1.0000007+20
1.4C011€5-08
1.4¢€116E-0@8
1.009¥¢89x+¢0

CLOCK 31
1.0¢2008LE+¢¢
1.450116E-7¢
1.46¢116E-08
1.002000%+¢c0

[Z VR VIS

NN

[ST T IEN

LT LI O < | T S T T = C O | O 1 T OO T D T2 == T | O I 1]

NP S RS PR - I USRS PRI INIY ¢ PSRN [o |

AN N

Figure 1153
WER.COM Runtime Results

2¢ Tt

*—i=ﬂIIIllllIIIlIIIIIlIIIlIIH!IIlIllIlIIIIIIIIII--.-.-.-...‘

TIME

IME

TIVE

TIME

UN

X1N
X2N1
AT1

ATZ2

EX

2K

TAl

TIME=1

X1N
X2N1
ALl
AILZ2
.4
E2K
TAl

TIMZE=G
UN
XIN
X2N1
iT1
ALZ

B2K
LAl
TIME=10

UN

X1N

X2N1

AD1

Az

X

22K

LAl

TIME=11

UN

X1iN

X2N1

AD1

A2

EK

E2K

LAl

[L I L | nwnonwunonn

PRINT.PLI ¥ith Zero Lelay

Figure

£l

1.000000
2.200000
0.000000
¢.000000
2.000000
0.000000
¢.200000
?.0ec¢oe0

1.000000
€.000000
2.200000
0.200000
©.ce0000
@.c00000
2.000000
2.c0020e0

1.000000
€.co0000
2.00000¢
©.200000
¢.000000
2.200000
2.200220
Z2.200000

1.2¢00¢0
2.120009
¢.e24c99
1.0002000
2.0008690
1.002¢00
1.00¢000
1.090000

1.0€00¢9
2.220000
€.2169¢9
1.2¢0000
2.000000
1.€00000
1.000000
1.020000

124

TIME=19

UN

X1N

X2N1

AD1

ALZ2

EK

E2K

LAl
TIME=20

UN

X1N

X2N1

AD1

ATz

EK

E2K

LAl

L I T T

TIME=29

UN

X1N

X2N1

ALl

ATz

=K

E2X

CAl
TIME=2¢

IN

X1IN

X2N1

ATl

ALZ

zK

B2

Al
TIME=31

UN

X1N

12N1

ALl

ALZ

K

82K

LAl

L L T I T

PRINT.PLI with Zero Lelay

1.00000¢
1.000000
€.500000
1.000000
0.000009
1.000000
1.000000
1.000000

1.000000
2.900000
0.555000
1.000000
P.500000
€ .5C0000
-1.000000
~1.270000

1.000000
¢.c00000
1.0€¢000
1.0006002¢
€.5¢0000
€.500000
-1.000809
-1.000000

1.2¢0000
0.2990000
1.000000
1.000000
1.200000
2.200000
2.000000
€.¢00000

1.820000
€.200000
1.02¢600
1.000009¢
1.02¢4020¢
€.00000ce
@.200000
©.000000

Figure 12B

22

T ——

e e TSRS,
TIME=0
UN = 1.0¢0000
X1N = 0.0000280
X2N1 = 0.000200
ADL = €.000000¢
AT2 = 0.000000
EK = 2.000000
E2K = ?.000000
LAl = €.00000e0
TIME=]1
UN = 1.000000
X1iN = ©.000000
X2N1 = e.00c000
ALl = ?.000000
AL2 = ©L.2000uVo
EK = ©.0C0000
E2K = 2.300000
TAl = €.020000
TIME=9
UN = 1.90¢920
XiN = ©.200029
X2N1 = ¢.g0eeee
ALl = ©.2000¢0
ALZ2 = ¢.00020¢C
N K = ¢.000009
2zX = 9.000000
TAl = C.C0d000
TIME=1¢
UN = 1.000000
X1N = ¢.000020
X2N1 = 2.0C0060
ALl = 1.000000
ALZ = €.200000
EK = 2.67€315
£2% = ¢.670319
[Al = L.0200200
TIME=11
UN = 1.000000
' I1IN = g.ze00ve
N L2N1 = 2.0000009
, : ALl = 1.200000
L A ' AT2 = €.000000
;o .4 = 2.€70315
E2K = 2.87031¢
. LAl = ¢.000009
Figure 124

PRINT,PLI #ith Forty Percent Lelay

TIME=12
UN = 1.000000
XiN = 2.0000909
X2N1 = ©.000009
AD1 = 1.000000
AIL2 = 0.000000
EK = ©.670319
! E2K = 0.670313
LAl = 2.000000
: TIME=13
j UN = 1.000000
. X1N = ¢.2000290
B X2N1 = €.000000
AD1 = 1.000000
ALz = £ .000000
EK = ¢.672319
E2K = 2.8723319
LAl = «.000000
TIME=14
UN = 1.200009
X1N = €.2€7031
X2N1 = 0.0033%1
ALl = 1.000000
AL2 = ¢ .022002
EK = 2.670313
B2K = 2.67231%
LAl = 0.67€31¢9
TIME=13
UN = 1.0890000
X1N = €.134¢ES
XNl = ¢.012406
ALl = 1.¢000¢0
AD2 = 2.000000
EX = 0.57031¢
E2K = £.67031¢
DAl = 0.6783135
TIME=4¢
UN = 1.602000
X1N = g.241242
X2N1 = 1.21€256
ATl = 1.000000
- AD2 = €.922099
g I} = @.235%221%
E2K = ~¢ .0S€455
DAl = ~¢.05€422
Figure 12b
| ‘ PREINT.FLI with Forty Percent [elay
!

: | a4

TIME=50

UN = 1.800000
X1N = ¢.831567
XaN1 = 1.015908
AT1 = 1.000000
AD2 = 1.016266
EK = ~0.010903
E2K = -¢.014894
LAl = ~¢ .036455
g TIME=51
| N = 1.080200
X1N = ¢.e21351
XaN1 = 1.022555
ALl = 1.020000
AL2 = 1.0162€6
EX = -0.312503
£2K = -¢.014364
DAL = ~¢ . 05455
TIME=52
| UN = 1.0¢0200
I - X1N = ¢.0123¢€
- X2N1 = 1.0242¢8
ALl = 1.200020
AL2 = 1.01€2¢6
EK = -0.010¢03
E2K = -0.0143%4
- DAl = -¢ .23€455
TIME=53
i _ uN = 1.0¢2020
X1N = ¢ .C02e€0
% X2N1 = 1.025747
| | ATl = 1.002020
AD2 = 1.8162€6
EK = -0.210¢23
E2K = -v.2148¢4
DAl = -¢.096455
TIME=54
UN = 1.022220
X1N = €.021170
2N = 1.025238
AT1 = 1.000220
AD2 = 1.21€2¢6
- =K = -0.2108¢a2
‘; 2% = -¢.214864
o DAL = - .214834

Figure 13C

PRINT.PLI %ith Forty Percent Delay

e —

TIME=55

UN

X1N

12N1

ALl

AL2

EX

EQK

LAl
TIME=5¢6

UN

X1N

X2n1

ATl

ATZ2

EX

g2

LAl
TIME=57

UN

L1IN

X2N1

ATl

AD2

EX

E2K

DAl

TIME=CS

UN

XN

X2N1

AD1

ATZ

EX

£2K

rai
TIME=10

JN

X1N

f2N1

AD1

ALz

EX

2K

LAl

[S VI TN T {0 -~ T B B O O L

PRINT.PLI

Figure

1.0000080
-¢.020318
1.0222€e1
1.2020000
1.0162¢€6
-€.012¢03
-0.014894
-€.214594

1.023000
-¢.201887
1.825175
1.000000
1.016266
-0.0123¢2
-0.2148%4
-0.214854

1.000008
-¢.003257
1.824¢1¢
1.000000
1.0162¢6
-0.212¢23
-¢.0143¢4
-2.¢14834

1.0¢0004¢
~0.000242
£ .596450
1.000000
1.0003¢1
~€ .0002€2
¢.ee1ecs
.2910¢€8

1.0000009
~@.00212¢
€.ce0431
1.00€000
9.96¢450
0.0003¢8
£.2000:=6
g.c010¢8

120

with Forty Percent [elay

g€

VIII. CONCLISIONS

A major vpoint of this tresis was to demonstrat2 the
feasiblility of writing a computer nrogram that can 2e used on
a4 microcomputer .by a novice programmer %7 iavelod r~oztrol
system models, simulation, and realization. This tyve <7
system was 1ot possible in tre past due to system memory
limitations and unaccertable software programs. Tre apfproach
taxen in tris project was to use commercially availactle high
level programming languages to reiuce thke codilinz time. As was
discussed im this thesis, the lancuaces cre nct sufficient in
tremselves and more than one lan-ua-e was nceeded t- ccmoplatae
tce orojest. It i< apparen?t tia%t a language that has the
features of a good relational database coupiel with =2wtrerely
s00d matnematical functions and tze atility to -~ommunicaslea
witk tke comput2r fhariware is a n22essity for this tyne ~F
systam to be a useful tool.

The importaace of recogaizing trat cont:sol systerms Cap e
moieled and maninulated iz a datadase sairnot e overioocke'l.
iy carryinz this approacz to %iaz 1imic it is possitla 2o
develoo a large databas2 of control fineotioas that ~cull b=
recallei and nsed liks a lidbrary. Jnc2 t.e database is formed
it :2ould Y»e manipulated oy artifi~ial 1{ntellii.eace., Tue
computer 1tself couid te told to ievelop a co7trcl systen to

matzh a desired set cf waveforms vsins the information stored

a7

..A<.._,....--._

e SR R vt

or at least find a best fit solution. Missing p;rameters
could bve searched for, cr best fit solutions cculd prssitly
be provided as easily as using tre tke opresent databace
systems to find phone numbers and names.

It 1is significant tkat source code was used for tre

intermediate language. A special purpose pro.gram coula Lave

[y
‘e
‘o
(Y]

teen written trat provided direct function calls to sre:
nardwvare; Lhowa2ver, by usinz higk level languzge scur-~e -~ode
the nrogram will run on many different macaiazes just by usiae
toeir resident sompilers., Tois was demonstrated by
transporting the programs t¢c four different mahines with
different ovperating environments. Iy using tource code tie
prodlem was kept at a high level of adstraction. Tk=2 v»rozrams
tke computer aeedel to write were similar to Taslish which
helped 1l2ssen the confusior while developing more thaa ors2
hundred files and vprograms,

4 fact trat tecame very appareat early in tte orogram
development was the need for a correction factcr to ta¥e in<o
account the delays 1in tre system due to calculatioas and
conversions. This jprecblem is agdressed in many models duyp it
is seldom considered 1a most ccocrputer solutions since the
computation time is usually insiznificzant. 1t w»as a2t2rmined
that solviag for all possible delays was azxt tc impcssidle
especially when inrlemented since the hardwar2 itself would
be variable. A correction factor is irovided that warks very

well with the example problem. Turtnsr investization aeede te

J)
D

s .

be done using other functions to test the results; howvever,
it is felt that the factor will work with any coatrol system
designed to have a zero steady state error signal. The basic
approach 1s to have the designer develop the model assuming

there are no delays and then estimate the delays to be

.applied to the correction factor. If the factor does not work

then try to develop one from other experience. If this fails
then use benchside engineering, make estimates and wat:h what
the results do.

Appendix ¢ contains several graphs of data covering the
example prodlem, A variety of delays were iantroduced an: the
results with and without the correction fa:tor are oprovided.
The problem was initially desigued assuming no delay and :igen
corrected for with the correction factor. It should be noted
that in all cases, even with delays up to €& per:ent,
acceptable results were produced within five times the
initial sample period design. This is significant since the
uncorrected functions had severe problems even with the c<mall
d1elays. #hen wusing the correction factor the longer delays
corrected better and {t {s felt that this 1is due to
outputting a control signal closer tc the time the input was
going to sample the result of the control. If a signal \is
output and sampled immediately, the probablility that tihe
response to that signal is the one observed is higher than if

a long delay were encountered possibly resultinz ia severe

data - error. GZSven though the system was designed for a step

et T g

input there is evidence that the cérrection factor works very
well for a ramp input. This is also shown in Appendix C.

As a final note the power of a graphical dynamic display
for the designer is invaluable., Readiang through many pages of
data makes it very difficult to see where the significant
changes are being made. A real time plot will cut design time

by an order of magnitude.

’
|
|
]
|
o

CINIT LBF
CMENU CM™MI
CONTROL CMT
DBASEAPP OVR
PBASEMOD OVR
LBASESRT OVR
PARINLEX NIX

FORM1 CMT
MENU FMT
STRT MEM
XSUB coM
FROC cME

APPENTIX A

CBASE II PROGRAMS

CINIT FMT : CINIT
CMENTU FMT : CMENU
PARAMS TBF : TATAL
DBASEBRO OVRK : TBASEJOI
DBASEMSC QOVR : IRASEMSG
IBASETTL OVR : LBASEUPT
SFORM SUB : LCLFUN
INIT LBF : INIT
MENT ZIP : MENU
SUBMIT1 COM : ZIP
SHORT CML : LCLMON
TATA CMD : FORM
Figure 14

1P
ZIP
CML
OVE
com
Ovh
CMD
MEM
ZPR
coM
CML
CMT

CINIT
CMENU
CBASE
TBASEMAI
CBASERPG
DBINSTL
FORM
MENU
STRT
ZIPIN
MONICL
KREFCRM

Programs Required for Tatabase Operation

y

SR W

ZPR
ZPR
coM
CVEk
OVR
com
SUB
c~D
LEF
CCM
CxI
¢MD

‘ fabaalh s T T A S NI g e s M g, 4+ h e 1 e S

* MENU.CML
SET TALK OFF :
RESTORE FROM INIT * See Figure 2
USE INI? * See Figure 2

. SET FORMAT TO MENU * See Figure 154 and 15F

- LO WHILE T

AT READ

L LO CASE

i ’ CASE ACTION = ‘@

i ACCEPT ‘DO _YCU REALLY WANT To QUIT? Y/N ° TO CN

5 IF CN = 7Y

" CUIT

4

o ENDIF
| CASE ACTION = “1°
' RESTCRE FROM INIT
! USE INIT
COPY TO PARAMS
USE PARAMS
DO CMENU
CASE ACTION = ‘2
s , ACCEPT “ENTER NAME OF OLT PROGRAM FILE ° ™C PARAY
- | RESTORE FROM APARAM
E _ USE SPARAM
COPY TO PARAMS
. USE PARAMS
LO CMENU
CASE ACTION = ‘3
ACCEPT “ENTER NAME OF FILE TO SAVE PARAMATIES IN ° TC FARAM
i SAVE TO SPARAM
COPY TO SPARAM
CASS ACTION = “4¢°
LISP ALL FUNCNAME
ACCEPT “FRESS RETURN TO CONTINUE ~ TC CN
CASE ACTION = “&°
ACCEPT “SNTER VAME OF QLT PROGAAM FILE
RESTORE FROM SPAKAM
USE SPARAM
COPY TO PARAMS
' USE PARAMS
! L0 SHORT
' ENICASE
- ENLLO

’

’

rd

e
&

A
~

g

e

#auns £1)e MEND %

D@D RPOP P DD ¥

ENTER ¢ TO
ENTER 1 TO
ENTER 2 TO
ENTER 3 TO
ENTER 4 TO
ENTER 5 TO

MENU . FMT

7,17

8,17

S,17
12,17
11,17
12,17
13,28
14,30
16,23
16,36

SAY
SAY
SAY
SAY
SAY
SAY
SAY
SAY
SAY
GET

QUIT

START A NEW PROELEM

RECALL AN OLYI PROELEM

SAVE PRESENT PARAMATERS

DISPLAY PRESENT FUNCTIONS

CHANGE INITIAL CONDITIONS ONLY

(This will allow the program
to compile muchk faster)

ENTER ACTION #ACTION

TENTER
"ENTER
"ENTER
"ENTER
"ENTER
"ENT ER

(This will allow the program
to compile much faster)
"ENTEAZ ACTION'

ACTION

(SN RV AV Sl)

Figure 18A

MENU

TO QUIT" .

TO START A NEW PROBLEM ™ _

TO RECALL AN OLL PROELFM™

TO SAVE PRESENT PARAMATERS

TO CISPLAY PRESENT FUNCTIONS'

TO CHANGE INITIAL uONDITIONa ONLY ™

Figure 15F

MENU Format

¥ CMEMU.CMIT
SET FORMAT TO CMENU * See figure 164 and 1€3
LO WHILE T
REAT
DC CASE
CASE ACTION = ‘0@
PACK
INDEX ON FUNCTYPE TO PARINTEX
USE PARAMS INLEX PARINLEX

——

’

DO CONTROL
CASE ACTION = “1°
ERASE
J LISP ALL FUNCNAME
; ACCEPT ‘ENTER RECORL NUMEEa TO EIIT “ TO CN

’

| ETIT &CN
i CASE ACTION = ‘2
APPENT FROM INIT * See figure 3

ECIT #
CASE ACTION = “3°
ERASE
3 LISP ALL FUNCNAME
ACCEPT™ “EINTER RECORL NUMBER TO DELETET ~° TC ¢CN

TELETE RECORL SCN
CASE ACTION = ‘4

ERASE

LISP ALL FUNCNAME

ACCEPT ‘ENTER RECORD NUMBER TO RECALL ~ 70 ¢CN

RECALL RECORI S&CV
CASE ACTION = “5°

SET FORMAT T0 CINIT * See figure 174 and 173

REAL

SET FORMAT T0 CMENU * See figure 16A and 1¢E
' ACCEPT “PRESS RETURN TO CONTINUE ° TO CN
i e CASE ACTION = ‘6’
» ‘ SET FORMAT TO MENU * See figure 18A and 15!
RETURN
. ENICASE
ENLTO

f . RETURN

#k%kk file CMENU **¥

G
@

ENTER @ TO
ENTER 1 TO
ENTER 2 TO
ENTER 3 TO
ENTER 4 TO
ENTER § TO
ENTER 6 TO

CMENU.

3,15
4,15
5.15
6,15
7,18
8,18
8,15
12,22
12,38

FMT
SAY
SAY
SAY
SAY
SaY
SAY
SAY
SAY
GET

COMPILE A PROGRAM
ECIT TRANSFER FUNCTIONS
ALL A TRANSFER FUNCTION

DELETE
RECALL
CHANGE
RETURN

A TRANSFER FUNCTION

A TELETEL TRANSFER FUNCTION
INITIAL CONLITIONS

TO THE MAIN PROGRAM

ENTER ACTION #ACTION

"ENTER 2 TO
"ENTER 1 TO
ENTER 2 TO
"ENTER 3 TO
"ENTER 4 TO
CENTER 5 70
"ENTER 6 TO
ENTER ACTI
ACTION

Figure 1€A

CMENU

COMPILE A PROGRAM" .

ECIT TRANSFER FUNCTIONS

ADD A TRANSFER FUNCTION

LELETE 4 TRANSFER FUNCTION .
RECALL A LZLETEL TRANSFER FINCTICN
CHANGE INITIAL CONDITIONS®,

RETURN TO THE MAIN PROGKAM
ON

Figure 16B

CMENU Format

~AD-A126 847 INTERACTIVE MICROCOMRUTER CONTROL SYSTEM MODELING AND 1 w
REALIZATION USING A DATABASE FOR AUTOMATIC PROGRAMMING
(U} NAVAL POSTGRADUATE SCHOOL MONTEREY CA R F JOHNSRUD
UNCLASSIFIED DEC 82 F/G 9/2 . NL

- -

Koy

%

s

]

— e N S\ ———_— . o —

s £

| =1"

r o "m TR

L (= ml.s)

.. ’ § '

o

o 2 s n

j _
. ‘
;o
L d MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL OF STANDARDS-1963-4

Mt

*xk5% File CINIT ***

' 4 CLIMIT #DLIMIT (This is the number of times the computer

will do calculations. ie. The number of

, sample periods.)

o ALIMIT #ALIMIT (This is the number of times each analog
calculation will be done during each sample
period. Effects how accurate the analog plant
is modeled.)

TELAY #IELAY (This §{s the number of analog calculations done
before the digital to analog is availible.;

T 4T (This is the sample rate of the digital system.
You must provide it if you are going to use it
in your equations.)

T1 #T1 (This is the sample rate of the analog system.

It is usuvally the same as T above during design:
however, for simulation it usually works out to

be T divided by ALIMIT since you usually want a
more accurate plot of tke aralog plant to see

wvhat happens between the digital sample periods.
You must provide T1 if you use it in your equa-
tions.)(This is effectively doudble rate sampling.)

Figure 17A
CINIT

——— T T - S e e

e .

M‘-mrjmaw.w.ﬁ P

RPRORRPDRORRRVRRDROIRDIPRPRRPERDRORRDARROPODOD &

CINIT.

2. 3
2,10
2,24
3,25
4,25
5, 3
5,10
5.24
6,25
7,25
8,25
9, 3
9,10

FMT
SAY
GET
SAY
SAY
SAY
SAY
GET
SAY
SAY
SAY
SAY
SAY
GET
SAY
SAY
SAY
GET
SAY
SAY
SAY
SAY
GET
SAY
SAY
SAY
SAY
SAY
SAY
SAY
SAY

"DLIMIT?"

ELIMIT

_(This is the number of times the computer”
will do calculations. ie. The number of
sample Jperiods.)"

"ALIMIT’

ALIMIT

“(This is the number of times each analog”
calculation will be done during each sample’
period Effects how accurate the analog plant”
"is modeled.)”

"LELAY

DELAY

(This is the number of analog zalculationas done
before the digital .o analog 1s availivle.)’
"

T

(This is the sample rate of the digital system.
You must provide it if you are going to use it
in .your equations.)”

"r1”

T1
"(Tkis is the sample rate of the analog system.’
It is usually the same as T above during design,
however, for simulation it usually works out to
be T divided by ALIMIT since you usually want, a
more accurate plot of the analog plant to sze’
vrat happens between the digital sample periods.
!ou must provide T1 if you use it in your equa~
“tions.)(This is effectively double rate sampling.)”

Figure 1738
CINIT Format

—— o o cu, et - e

* CONTROL.CML

LO CCLMON
STORE ¢ TO

INI

LOCATE FOR FUNCTYPE

L0 PROC
STORE ¢ TO
LOCATE FOR
L0 PROC
STORE @ TO
LOCATE FOR
L0 PROC
STORE 4 TO
LOCATE FOR
LO PROC
PO DATA
LO FORM

QUIT TO “SUYBMIT1 FORM’

SET TALK ON
RETURN

INT
FUNCTYPE

IND
FUNCTYPE

INT
FUNCTYPE

* DCLMON.CMD

SET ALTERNATE ON
LOCATE
LO WHILE .NOT. EOF

|
! CONTINUE
4 ENLLO
COUNT FOR SAVEDATA TO DATA1L
° ¢ float static ext init(‘+str(T7,8,4)+7),’
T1 float Static ext init(+str(T1,8,4)+"),”
! DLIMIT fixed static init{(‘+ str(DLIMIT,4)+")
(ALIMIT float static init(’+ str(ALIMIT,4)+")
: delay float static init(“+ str(LELAY,4)+"),’
: 1 dat ext,’
, ‘ 2 data(+str(DATAL,3)+") dec(15,6)°
SET ALTERNATE OFF
STORE “AA° TO T:NAME
(DO MONDCL
: STORE “AL’ TO T:NAME
IO MONDCL
STORE ‘IL” TO T:NAME
IO MCNDCL
STORE “TA° TO T:NAME
. IO MONICL
N RETURN

S 8 & & N

") 3 NI R e e N

* MONLCL.CML

SET ALTERNATE ON
LOCATE FOR FUNCTYPE = T:NAME
IF EOF THEN
?
ELSE
LO #HILE .NOT. EOF
? ‘dummy_ptr = “+funcname+’(code)\’
CONTINUE
ENDDO
e ENLIF
f SET ALTERNATE OFF
. RETURN

1525

SET ALTERNATE TO B:ICLMON * B: not needed if single disk

2 ° ‘+FUNCNAME+’ ext entry(fixed(7)) returns(ptr),’

’
’

’
1 4

SET ALTERNATE TO B:&T:NAM:I * B: not needed if single disk

N k.

Py * PROC.CML
! 4 IO WHILE .NOT. EOF
§ STORE IND+1 TO INT
STORE ‘LCLFUN. +$(FUN,INL,1)+FUNCTYPE TO T:NAME
SET ALTERNATE TO B:&T:NAME * E: not needed if single disk
SET ALTERNATE ON
FUNCNAME+“:proc(code) returns(ptr)\’
‘del”’
‘nr_inputs fixed(?) static init{(“+NR:INPUTS+),’
INPUT:A+ " ext entry(fizxed (7)) returns(ptr),’
INPUT:B+ ext entry(fizxed (7)) returas(ptr),’
INPUT:C+” ext entry(fixed(?7)) returas{ptr),”’
INPUT:I+° ext entry(fixed (7)) returas(ptr),’
INPUT:E+ ext entry(fixed(7)) returans(ptr),’
‘cod(5) fixed(?) static init(’ +A1P2L+’, +B1P2L+;
“,"+C1P2L+ ", “+L1P2L+ ", +E1P2L+"),”
STORE STR(FK,8,4) TO TEMPOUT
? °F float static init(“+TEMPOUT+"),”
b i STORE STR(FKL,8,4) TO TEMPOUT
, ? ‘0 float static ianit(+TEMPOUT+)\"
? ‘del”’
?2 7 1 dat ext,’
? 2 data(’+STR(data1,3)+") dec(15,6)\’
SET ALTERNATE OFF
STORE “INPUT. +$(FUN,INL,1)+FUNCTYPE TO T:NAME
SET ALTERNATE TO B:&T:NAME * B: not needed if single disk
SET ALTERNATE ON
? “input(1) = “+INPUT:A+"\’

it o oA, et A <. e
NN N)))) e N

. ? “input(2) = “+INPUT:B+"\’

" ? “input(3) = “+INPUT:C+"\~

; ? “input(4) = “+INPUT:L+°\~
’ ? “input(5) = “+INPUT:E+"\~

, : SET ALTERNATE OFF
i STORE ‘“FUNC. +$(FUN,INL,1)+FUNCTYPE TO T:NAME

SET ALTERNATE TO B:ST:NAME * B: not needed if single disk

SET ALTERNATE ON

? EQUATION

SET ALTERNATE OFF

STORE ‘OUT. +$(FUN,INL,1)+FUNCTYEE TO T:NAME

SET ALTERNATE TO B:&T:NAME * B: not needed if single disk

SET ALTERNATE ON

IF SAVETATA
STORE ELEMENTS+1 TO ELEMENTS
? ‘data(“+STR(ELEMENTS,3)+") = ftc(+LATANAME+)\~
? [put skip list(aata(]+STR(ELEMENTS,3)+{) = *,]
27 LTATANAME+’)\’

- ELSE
e 4
ENLIF
- 3ET ALTERNATE OFF
CONTINUE
ENLIO
KETURN

* DATA.CMD
SET ALTERNATE TO B:LATAINFO * B: not needed if single disk
SET ALTERNATE ON

? timez fized static init(’ +STR(£LIMIT*ALIMIT 4)+7) .7

? ‘ar_data fixed static init(“+STR(LATAL,3)+°),”

COUNT “FOR SAVEDATA .AND. (FUNCTYPE = ‘AA°) TO IND

? ‘nr_aa fixed static init(“+STR(IND, 2)*

)
L’)
)y’
L)
)

COUNT FOR SAVELATA .ANT. (FUNCTYPE = °AL’) TO INI
? ‘nr_ad fixed static init(“+STR(IND, 2)+'
COUNT FOR SAVEIATA .ANL. (FUNCTYFE = ‘TL’) TG IND

? “nr_dd fizxed static init(‘+STR(INL, 2)* .
COUNT “FOR SAVELATA .ANL. (FUNCTYPE = ‘TA’) TO INT
? ‘nr da fixed static init(‘+STR(INL,2)+7),”
? name(“4STR(DATA1,3)+") char(g) static init(’
STORE “AA° TO T:NAME
TO LATA1 :
LOCATE FOR PUNCTYPE = “AA°
IF .NOT. EOF
% °,’
ENDIF
STORE AL TO T:NAME
L0 TATAl
LOCATE FOR FUNCTYPE = “AlD
IF .NOT. EOF
2?2 °,’
ENDIF
STORE ‘IL” TO T:NAME
L0 L[ATA1L
LOCATE FOR FUNCTYPE = ‘DD’
I¥ .NOT. EOF
2?2 7,7
ENDIF
STORE “TA° TO T:NAME
IO LATAlL
2?2)’
SET ALTERNATZ OFF
KETURN

’

* DATA1.CMD
LOCATE FOR SAVELATA .ANL. (FUNCTYPE = T:NAME)
DO #HILE .NOT. EOF

?2 [’)+FUNCNAME+["]

CONTINUE

IP .NOT. EOF

2 %,

ENLIF
ENDDO
RETURN

1e1l

7 R VARSI TR F——

* FORM.CMT
SET ALTERNATE T0 FORM.SUB
SET ALTERNATE ON
‘B:° *# B: not needed if single disk

‘XSUB”’
‘REFORM AA.TXT AA.TTT’
‘REFORM AL.TXT AL.TTT’
REFORM DD.TXT DD.TTT’
‘REFORM LA.TXT LA.TTT’
‘PL1 MONITOR’
STORE “AA° TO T:NAME
L0 LCLFUN,
STORE “AL" TO T:NAME

DO DCLFUN
STORE ‘IL° TO T:NAME

LO LCLFUN
STORE ‘DA° TO T:NAME
IO LCLFUN

? ‘PLI PRINT’

? ‘LINK PRINT’

? ‘LINK ANSWER=MONITOR’

A LOCATE
n . DO WHILE .NOT. EOF

2?2 ‘, +TRIM(FUNCNAME)
CONTINUE
ENDDO

") ") W)) N e))

?
SET ALTERNATE OFF
RETURN

—r

\ * TLCLFUN.CML
i LGCATE FOR FUNCTYPE = T:NAME
STORE @ TO INL
IO WHILE .NOT. EOF
STORE IND+1 TO IND
STORE 4(FUN,INI,1)+FUNCTYPE TO EXT:NAME
| LO REFORM
: CONTINUE
| ENLLO
KETURN

REFORM.CMD

? ‘REFORM INPUT. +EXT:NAME+” INPUT.TTT’

7 REFORM LCLFUN. +EXT:NAME+” LCLFUN.TTT’

] ? “PIP FUNC.TXT=FUNC. +EXT:NAME

| ? “REFORM OUT. +EXT:NAME+ QUT.TTT’

? ‘PLI ‘+FUNCTYPE
2 ‘PIP “+TRIM(FUNCNAME)+’ . REL="+FUNCTYPE+ .REL"’
RETURN

* SHORT.CMD

SET FORMAT T0 CINIT * See figure 17A and 17B
READ
SET TALK OFF
SET ALTERNATE T0 B:LCLMON *B: not needed if using a single disk
SET ALTERNATE ON
LOCATE
BO WHILE .NOT. EOF
* “+FUNCNAME+’ ext entry(fixed(7)) returas(ptr),”’
CONTINUE
ENILO
COUNT FOR SAVETATA TC CATAL
T float static ext init(’+str(T7,8,4)+"),
?1 float static ext init(’+str(T1,8 4)+').'
CLIMIT fixed static init(’+ str(anMIT.4)+').
ALIMIT float static init(“+ str(ALIMIT,4)+"),
delay float static tnit(“+ str(LELAY,4)+"),"
1 dat ext,
‘ 2 data(+str(LATA1,3)+°) dec(15,6)°
SET ALTERNATE OFF
SET ALTERNATE TO SFORM.SUB
SET ALTERNATE ON
? 'XSUB'

3 ed) =) W)))
L S K SN Y

B * B: not needed if using a single disk
‘PLI MONITOR

‘PLI PRINT’
‘LINK PRINT’

‘LINK ANSWER=MONITOR®
LOCATE
IO WHILE .NOT. EOF

2? ’, +TRIM(FUNCNAME)
CONTINUE

ENTLO

?

SET ALTERNATE OFF

QUIT TO ‘SUERMIT1 SFORM’
RETURN

3 =) s) WD

1¢3

M—--—.____1

APPENLIX B
PL/1-80 PROGRAMS

AA PLI : AL PLI : IA PLI : ICLINP 7X7
D PLI : LINK COM : MONITOR PLI : PLI M
PLIO oVl : PLI1 OVl : PLI2 OVL : PLILIZ Iail
PIP COM : REFORM PLI : KEFORM REL : KEFORM CCM
REFORM SYM : LCLMON TXT : AA PXT : AL TXT
IT TXT : TA TXT : LCLFUN AAA : INPDT AAA
FUNC AAA : OUT AAA : DCLFUN BAA : INPUT B2A
FUNC BAA : OUT BAA : LCLFUN CAA : INPUT CAA
FUNC CAA : OUT CAA : LCLFUN AAL : INPOT AAD
FUNC AAL : OUT AAL : LCLFUN BAT : INPUT EAL
FUNC BAD : OUT BAD : DCLFUN ADD : INPUT ALD
FUNC ALL : OUT ATL : LCLFUN BIT : INPUT 3IL
FUNG BDD : OUT BDD : DCLFUN ADA : INPUT ADA
FUNC ALA : OUT ALA : TATAINFO TXT : AA PTT
AT oTM ;LT TTT : TA TTT : MONITOR 4EL
INPOT TTT : DCLFUN TTT : CUT TPT : AA 3EL q
X1N REL : UN KEL : X2N1 REL : AL ATL
ar2 REL : AD1 REL : LD REL & E2K REL
EK REL : LA REL : FUNC TXT : TA1 3L
FRINT RSL : PRINT COM : PRINT SIM : DATA FLT
ANSWER COM : ANSWER SYM : PRINT PLI
Figure 18

Programs Required for FL/1-80 Operation

; 124

- S — .
T, e ————— e et . e ae

MONITOR: proc options(main,stack(512));

del
ftc entry (float bdinary) returns(char(17) var);
del
TIME fixed ext static init(2),
DCLOCK fixed ext static init(@
ACLOCK firxed ext static init(2
AC(8) float ext static init(@,
DA(8) float ext static init(2,
dummy_ptr ptr,
code fixed(7),
CF float ext, /* correction factor for error signal */
datafile file;
dcl
%include ‘dclmon.txt’;

open file(datafile) record sequential output title(‘data.f1t’)
eav(b(512));
CF = ftc(exp(char(-delay/ALIMIT)));
do while (DCLOCK <= DLIMIT);
PUT SKIP LIST(LCLOCK, LCLOCK”): /* SLIT */
code = 13
ACLOCK = 93
¥include “ad.ttt’;
%include ‘dd.ttt’;
code = 1;
do while (ACLOCK <= ALIMIT - 1);
PUT SKIP LIST(ACLOCK, “ACLOCK’,TIME, “TIME"); /% ELIT */
if ACLOCK = delay then do;
%include ‘da.ttt’;
end; /* if */
%include ‘aa.ttt’;
write file(datafile) from(dat);
TIME = TIME + 1;
ACLOCK = ACLOCK + 135
end; /* do */
DCLOCK = LCLOCK + 1;
end; /* do */
close file(datafile);
end MONITOK;

/* AAPLI %/
%include ‘dclfun.ttt”;
decl
a {tc entry (float bvinary) returns(char{1?) var);
c
TIME fixed ext,
T float ext,
T1 float ext,
input(5) variable entry(fixed (7)) returas(ptr),
EA firxed static init(3),
. EAl fixed static init(e¢),
DA(8) float ext,
ACLOCK fixed ext,
code fixed(7?),
result ptr,
m(%) labvel,
(ia_ptr,id_ptr,ic_ptr,id_ptr,ie_ptr) ptr;
%include “dclinp.txt?;

%include “input.ttt’; .
if code = 1 then doj;
if EA { TIME then do;
if (nr_inputs> @) & (ar_inpuis< €)
then dojs
(m(1)=la;

m(2)=1b;
m(3)=1c;

4 ' - m(*)'ld; ’

, N m(5)=1’e; {
: goto m(nr_inputs);
| . end; /* then */

else goto 1f;
: le: ie_ptr = input (5) 5)); j
1d: id_ptr = input (4) 4));
" le: tc_ptr = input (3) (cod(3));
1b: ib_ptr = input (2) 2));
| la: ia_ptr = input (1) 1));
) 1f: 0 = F3
; , EAL = TIMES
b %include “func.txt’;

|}
EA = TIME;
end; /* {f EA */

.j end; /* if code then */
: ! else
T if EA1l < TIME then do;
S 0= Fj

: . EAL = TIME;}

- end; /* EAl %/

! %include ‘out.ttt’;

L result = addr(F);

| | return (result);
end)

126

TN

/¥ AL .PLL */
zinclude ‘dcilfun.ttt’;

decl

ftc entry (float binary) returns(char(1i7) var);
dcl

EA fixed static init(@),

T float ext,

T1 float ext,

inpput(5) variable entry(fixed(7)) returns(ptr),

CF float ext,

AT(8) float ext,
(. code fixed(7?),
f result ptr,
m(s) labdel,
(ia_ptr,ib_ptr,ic_ptr,id_ptr,ie_ptr) ptr;

, %include “dclinp.txt”;
i zinclude “faput.ttt’;

if EA > @ then dos
if (nr_inputs> @) & (ar_inputs< &)
then doj
m(1)=1la;
m(2)=1b3
m(3)=1c;
~m(4)=14d; ‘
m{(5)=1e;
. goto m(ar_inputs);
} - end; /* then */
else goto 1f;

.

' le: ie_ptr = iaput (5) (coed(2));

; 1d: id_ptr = input (&) (cod(4))i
lc: ic_ptr = faput (3) (cod(3));
1b: ib_ptr = input (2) (cod(2));
la: ia_ptr = iaput (1) (cod(1)):
1f:

¥include ‘func.txt’s /* AIL(L) = IA + ETC */
H

end; /* then */

result = addr(F);

EA = 13

N %¥include ‘out.ttt’;

’
o return (result);
. end;

|
i
boog
. B 107 j
t
{

\ L iedd
St R AN A, it Akt | i

/* DD.PLI =/
%¥include ‘dclfun.ttt’;
dcl .
ftc entry (float dinary) returns{char(1i7?7) var);
del
TIME fixed ext,
T float ext,
T1 float ext,

- ioput(5) variabdle entry(fixed(7)) returns(ptr),
; ED fixed static init(2),
» . ED1 fixed static init(@),

? CF float ext,
ALC(8) float ext,
DCLQOCK fired ext,
code fixed(?),
result ptr,
m(5) labdel,
(ia_ptr,id_ptr,ic_ptr,id_ptr,ie_ptr) ptr;
, %include ‘dclinp.txt”;
' L
¥include “input.ttt’;
if code = 1 then do;
if ET < LCLOCK then do;
if (ar_inputs> 2) & (ar_inputs< €)
' then dos
{ m(1)=la;
m(2)=1b;
m(3)=1lc;
~ ’ m(4)=1d;
m({5)=le;
goto m{nr_inputs);

| end; /* then */

g else goto 1f;
le: fe_ptr = input (
1d: id _ptr
lc: ic_ptr
1b: ib_ptr
la: ia_ptr
1f: 0 = F3
EL1 = I[CLOCK:

%include ‘func.txt’;

?

i EL = DCLOCK;
. end; /* if EL */
end; /* {f code then */
- else do;
& ifOEDIF< LCLOCK then dos
, . = :
. EL1 = LCLOCK;
end; /* EL1 */
end; /* else */

’ Zinclude “out.ttt’;

| result = addr(F);

! : return (result);

end;

- v o

5)
input (4)
input (3)
2)
1)

Wuunu
— i~~~
OO0
coo0oo0o
ARAARAR
P— A
- 0N G
N Nt gt vt Nt
N et Vgl Vo ot
P Be Wy e WS

188

———
~— b e L .

/* TA.PLL */
%include ‘declfun.ttt’;

dcl
ftc entry (float bdinary) returns(char(1?) var);
dcl
! TIME fixed ext,
! T float ext,
T1 float ext,
i ! fnput(d) variadle entry(fixed:?)) returns(ptr!},
CF float ext,
, AD(ag float ext,
La(8) float ext,
code fixed(7),
, result ptr,
. m(%) labdel,
i (1a_ptr.1b_p}r.1c_ptr.1d_ptr.1e_ptr) ptr;

¥include ‘delinp.txt”:
2include “laput.ttt’;

if TIME > @ then do:
({f (ar_tnputs> @) & (ar_inputs< 6)
then do.
m{l)=la?
m(2)=1d;
m(3)=lcs
m(4)=ld;
m(5)=le;
Roto m(nr_inputs);
g end; /™ then */
else goto 1f;
le: e _ptr
ld: td_ptr
le: {c_ptr
1b: ib_ptr
la: ta_ptr
1f:
tinclude ‘func.txt’: /® JA(X) = IR = §CT *,

input
input
input
iaput
faput

» s 0 0
——
[KON NS
N Nt
—— o~ —
Pt et s P
R i o
*o we we wr we

\J
end: /* then %/
result = addr(F);

o ainclude ‘out.ttt’;

1]
. : return (result);
end:

129

—

REFORM: proc options(main);

decl
(input,output) file,

buff char(l) varying;

open file(input) stream env(b(1824)) title(’31.517);
open file(output) stream output env(db(1224)) title(’$2.%2°);

do while (“170v);

read file (input) into (buff):
,“ buff = translate(buff,’;","\");
& write file (output) from (buff);
; end;
$

end reform;

i PRINT: proc options(main);

- dcl
! data dec(15,6),
(j,koym) fixed din(7?),
' (time,dat,temp_str) - char(128) var,
* (info,input, output) file,
' %1nc1ude datainfo txt’s

open file(input) record sequential title(LATA.FLT")
env(b(512));

open file(output) stream output title(“$1.51")
env(b(512));

do k = @ to timel,
time = ’ v

! temp_str="TIME="|lchar(k);

dom =1 to length(temp_str);
if substr(temp str,m,1) "= ° ° then
time = time| substr(temp_str.m.l):
end; -~
time = " j'm]
el write file(output) from(time)

¢ do j= 1 to nr_data;s

read file(input) into(data2
t

N

{time;
H

dat = “"m e name(j)i} "= !lcraridata);

write file{output) from(da

j " end;

; o end; /* do k */
! end;

'
)i

T e e e e s Am—— . <5 . s

AFPENLIY C
GRAPES OF EXAMPLE PROBLEM EZSULTS

Figure 1cA

Response to Unit Step Input With No Correction

Figure 1¢B

Kesponse to Unit Step laput with Correction

111

I \..?.‘;‘ii‘_'.;h‘.;,fu?fef:n:'ﬁr N

Lo

! i
1
Figure 15C
Terminated Ramp Input ¥With No Corrections
]

Figure 19D

Terminated Ramp Input With Corrections

112

P T i
0 g
g, g ——— e m
o

———— e N g s CYISRS) g MR,
S AN e ' . R R et AT BN AT

L s s >

| S98Z DELAY
B UNCORRECTED

AMPLITUDE

88X DELAY
CORRECTED

o . Figure 1¢E

{ Response to Variable 5Step Inputs with and Without Corre-tions

9B8% DELAY
UNCORRECTED

- o —

:
T 9@% DELAY

-2 CORRECTED !

Figure 1l¢F

' Response to Variadle Step Inputs with and Without Corrections

114

LIST OF REFERENCES
f 1. Ratliff,w., DEASZ II Assembly - LapRuage Relational
‘ Database Mapageren: System, Ashton Tate, Culver City,
California, 1982

2. PL/1-5¢ Reference Manual, Iizital researck, Paciei-
Brove, California, 1386

PL/1-6¢ Applications Julde, Ligital Research. Pacific

- - = -

e et

FITR VP Y

e

BIBLICGEAPHY

e D — ——

- =D D D =D D W - o

1¢72

Cgata, X., Modern Control Englasering. Freatice dall,
172

I/t Handbeok sith ¥E/N, 5ytex Iac.,

[}

Zar:S [Ro ’ ggé

Pkl o)

R

TR e o ey e L
.

-

e e ——

Tefense Technical Information Center
Cameron Station
Alexandria, Virginia 22214

Libvrary, Code 2142
Naval Postgraduate School
Monterey, California S354¢

Lepartment {tairman, Code 62
Tepartmeat of Electrical Engineering
Naval Postgraduate Sclool

Monterey, California &340

’rofessor-Alex Gerbdba, Jr., Code 525Gz
Tepartment of Electrical Engineerinz
Naval Postgraduate School

vonterey, California ¢€3c40

Precfessor George J, Thaler, Code E2Tr
Tepartment of Electrical Engineering
Naval Postgraduate Schcol

Monterey, Califoraia 352G4€

Professor Mitchell L. Cotton, lode &2Cc
Lepartmeat of Electrical Engineering
Naval Postgraduate Sctool

Monterey, California ©3¢40

Professor Zarold A. Titus, Code €2Ts
Lepartment of Electrical. “ngineerinz
Naval Postgraduate School

Monterey, California 53¢4g

Professor Uno R. Zodres, Code 3ZKr
Lepartment of Computer 32ience
Naval Postgraduate Schtool
vonterey, Califcraia 32940

Lt. Roger ¥. Johnsrud, USN

% Cindy F. Lee

€561 Universe Avenue
Westminster, California C2€&3

No, Copies
2

